Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.08286
Cited By
Can stable and accurate neural networks be computed? -- On the barriers of deep learning and Smale's 18th problem
20 January 2021
Matthew J. Colbrook
Vegard Antun
A. Hansen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Can stable and accurate neural networks be computed? -- On the barriers of deep learning and Smale's 18th problem"
16 / 16 papers shown
Title
On the uncertainty principle of neural networks
Jun-Jie Zhang
Dong-xiao Zhang
Jian-Nan Chen
L. Pang
Deyu Meng
57
2
0
17 Jan 2025
Mathematical Algorithm Design for Deep Learning under Societal and Judicial Constraints: The Algorithmic Transparency Requirement
Holger Boche
Adalbert Fono
Gitta Kutyniok
FaML
28
4
0
18 Jan 2024
When can you trust feature selection? -- I: A condition-based analysis of LASSO and generalised hardness of approximation
Alexander Bastounis
Felipe Cucker
Anders C. Hansen
20
2
0
18 Dec 2023
Training Neural Networks Using Reproducing Kernel Space Interpolation and Model Reduction
Eric A. Werneburg
16
0
0
31 Aug 2023
Computability of Optimizers
Yunseok Lee
Holger Boche
Gitta Kutyniok
27
16
0
15 Jan 2023
Restarts subject to approximate sharpness: A parameter-free and optimal scheme for first-order methods
Ben Adcock
Matthew J. Colbrook
Maksym Neyra-Nesterenko
27
2
0
05 Jan 2023
To be or not to be stable, that is the question: understanding neural networks for inverse problems
David Evangelista
J. Nagy
E. Morotti
E. L. Piccolomini
23
4
0
24 Nov 2022
Limitations of neural network training due to numerical instability of backpropagation
Clemens Karner
V. Kazeev
P. Petersen
32
3
0
03 Oct 2022
Physics-informed compressed sensing for PC-MRI: an inverse Navier-Stokes problem
Alexandros Kontogiannis
M. Juniper
24
10
0
04 Jul 2022
Localized adversarial artifacts for compressed sensing MRI
Rima Alaifari
Giovanni S. Alberti
Tandri Gauksson
AAML
14
4
0
10 Jun 2022
Physical Activation Functions (PAFs): An Approach for More Efficient Induction of Physics into Physics-Informed Neural Networks (PINNs)
J. Abbasi
Paal Ostebo Andersen
PINN
AI4CE
25
14
0
29 May 2022
NESTANets: Stable, accurate and efficient neural networks for analysis-sparse inverse problems
Maksym Neyra-Nesterenko
Ben Adcock
25
9
0
02 Mar 2022
Limitations of Deep Learning for Inverse Problems on Digital Hardware
Holger Boche
Adalbert Fono
Gitta Kutyniok
24
25
0
28 Feb 2022
Solving Inverse Problems With Deep Neural Networks -- Robustness Included?
Martin Genzel
Jan Macdonald
M. März
AAML
OOD
21
101
0
09 Nov 2020
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
133
1,198
0
16 Aug 2016
Convolutional Neural Networks Analyzed via Convolutional Sparse Coding
V. Papyan
Yaniv Romano
Michael Elad
56
284
0
27 Jul 2016
1