Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.07600
Cited By
Interpretable Models for Granger Causality Using Self-explaining Neural Networks
19 January 2021
Ricards Marcinkevics
Julia E. Vogt
MILM
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Interpretable Models for Granger Causality Using Self-explaining Neural Networks"
8 / 8 papers shown
Title
Adapt3R: Adaptive 3D Scene Representation for Domain Transfer in Imitation Learning
Albert Wilcox
Mohamed Ghanem
Masoud Moghani
Pierre Barroso
Benjamin Joffe
Animesh Garg
50
0
0
06 Mar 2025
CausalMMM: Learning Causal Structure for Marketing Mix Modeling
Chang Gong
Di Yao
Lei Zhang
Sheng Chen
Wenbin Li
Yueyang Su
Jingping Bi
34
4
0
24 Jun 2024
Learning the Causal Structure of Networked Dynamical Systems under Latent Nodes and Structured Noise
Augusto Santos
Diogo Rente
Rui Seabra
José M. F. Moura
11
4
0
10 Dec 2023
A Survey on Causal Discovery Methods for I.I.D. and Time Series Data
Uzma Hasan
Emam Hossain
Md. Osman Gani
CML
AI4TS
33
24
0
27 Mar 2023
Causal Recurrent Variational Autoencoder for Medical Time Series Generation
Hongming Li
Shujian Yu
José C. Príncipe
CML
BDL
MedIm
28
47
0
16 Jan 2023
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
36
11
0
07 Nov 2022
Bayesian Spillover Graphs for Dynamic Networks
Grace Deng
David S. Matteson
16
3
0
03 Mar 2022
Neural graphical modelling in continuous-time: consistency guarantees and algorithms
Alexis Bellot
K. Branson
M. Schaar
CML
AI4TS
24
43
0
06 May 2021
1