Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.07337
Cited By
Dissonance Between Human and Machine Understanding
18 January 2021
Zijian Zhang
Jaspreet Singh
U. Gadiraju
Avishek Anand
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Dissonance Between Human and Machine Understanding"
20 / 20 papers shown
Title
Perception of Visual Content: Differences Between Humans and Foundation Models
Nardiena A. Pratama
Shaoyang Fan
Gianluca Demartini
VLM
122
0
0
28 Nov 2024
Generalisation in humans and deep neural networks
Robert Geirhos
Carlos R. Medina Temme
Jonas Rauber
Heiko H. Schutt
Matthias Bethge
Felix Wichmann
OOD
94
605
0
27 Aug 2018
Human-like generalization in a machine through predicate learning
L. Doumas
Guillermo Puebla
Andrea E. Martin
NAI
40
9
0
05 Jun 2018
Ít's Reducing a Human Being to a Percentage'; Perceptions of Justice in Algorithmic Decisions
Reuben Binns
Max Van Kleek
Michael Veale
Ulrik Lyngs
Jun Zhao
N. Shadbolt
FaML
48
527
0
31 Jan 2018
Building machines that adapt and compute like brains
Brenden M. Lake
J. Tenenbaum
AI4CE
FedML
NAI
AILaw
315
886
0
11 Nov 2017
Learning Credible Models
Jiaxuan Wang
Jeeheh Oh
Haozhu Wang
Jenna Wiens
FaML
43
30
0
08 Nov 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
635
21,613
0
22 May 2017
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
142
2,854
0
14 Mar 2017
Right for the Right Reasons: Training Differentiable Models by Constraining their Explanations
A. Ross
M. C. Hughes
Finale Doshi-Velez
FAtt
108
585
0
10 Mar 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
354
3,742
0
28 Feb 2017
Model-Agnostic Interpretability of Machine Learning
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
66
836
0
16 Jun 2016
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
132
3,672
0
10 Jun 2016
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
Christian Szegedy
Sergey Ioffe
Vincent Vanhoucke
Alexander A. Alemi
306
14,196
0
23 Feb 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
650
16,828
0
16 Feb 2016
Embracing Error to Enable Rapid Crowdsourcing
Ranjay Krishna
Kenji Hata
Stephanie Chen
Joshua Kravitz
David A. Shamma
Li Fei-Fei
Michael S. Bernstein
LRM
62
91
0
14 Feb 2016
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
522
27,231
0
02 Dec 2015
Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model
Benjamin Letham
Cynthia Rudin
Tyler H. McCormick
D. Madigan
FAtt
52
743
0
05 Nov 2015
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
Ke Xu
Jimmy Ba
Ryan Kiros
Kyunghyun Cho
Aaron Courville
Ruslan Salakhutdinov
R. Zemel
Yoshua Bengio
DiffM
286
10,034
0
10 Feb 2015
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
342
43,511
0
17 Sep 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.0K
99,991
0
04 Sep 2014
1