Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.06197
Cited By
Deciding What to Learn: A Rate-Distortion Approach
15 January 2021
Dilip Arumugam
Benjamin Van Roy
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deciding What to Learn: A Rate-Distortion Approach"
8 / 8 papers shown
Title
On Bits and Bandits: Quantifying the Regret-Information Trade-off
Itai Shufaro
Nadav Merlis
Nir Weinberger
Shie Mannor
38
0
0
26 May 2024
Bayesian Reinforcement Learning with Limited Cognitive Load
Dilip Arumugam
Mark K. Ho
Noah D. Goodman
Benjamin Van Roy
OffRL
34
8
0
05 May 2023
Online Learning-based Waveform Selection for Improved Vehicle Recognition in Automotive Radar
C. Thornton
William W. Howard
R. M. Buehrer
19
1
0
01 Dec 2022
On Rate-Distortion Theory in Capacity-Limited Cognition & Reinforcement Learning
Dilip Arumugam
Mark K. Ho
Noah D. Goodman
Benjamin Van Roy
31
4
0
30 Oct 2022
Between Rate-Distortion Theory & Value Equivalence in Model-Based Reinforcement Learning
Dilip Arumugam
Benjamin Van Roy
OffRL
38
1
0
04 Jun 2022
Non-Stationary Bandit Learning via Predictive Sampling
Yueyang Liu
Kuang Xu
Benjamin Van Roy
24
19
0
04 May 2022
The Value of Information When Deciding What to Learn
Dilip Arumugam
Benjamin Van Roy
37
12
0
26 Oct 2021
Reinforcement Learning, Bit by Bit
Xiuyuan Lu
Benjamin Van Roy
Vikranth Dwaracherla
M. Ibrahimi
Ian Osband
Zheng Wen
30
70
0
06 Mar 2021
1