Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.04834
Cited By
Whither AutoML? Understanding the Role of Automation in Machine Learning Workflows
13 January 2021
Doris Xin
Eva Yiwei Wu
D. Lee
Niloufar Salehi
Aditya G. Parameswaran
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Whither AutoML? Understanding the Role of Automation in Machine Learning Workflows"
17 / 17 papers shown
Title
EDCA - An Evolutionary Data-Centric AutoML Framework for Efficient Pipelines
Joana Simões
João Correia
156
0
0
06 Mar 2025
Data Makes Better Data Scientists
Jinjin Zhao
A. Gal
Sanjay Krishnan
26
2
0
27 May 2024
Towards Feature Engineering with Human and AI's Knowledge: Understanding Data Science Practitioners' Perceptions in Human&AI-Assisted Feature Engineering Design
Qian Zhu
Dakuo Wang
Shuai Ma
April Yi Wang
Zixin Chen
Udayan Khurana
Xiaojuan Ma
50
1
0
23 May 2024
Towards a Non-Ideal Methodological Framework for Responsible ML
Ramaravind Kommiya Mothilal
Shion Guha
Syed Ishtiaque Ahmed
42
7
0
20 Jan 2024
Assessing the Use of AutoML for Data-Driven Software Engineering
Fabio Calefato
L. Quaranta
F. Lanubile
Marcos Kalinowski
32
7
0
20 Jul 2023
Why is AI not a Panacea for Data Workers? An Interview Study on Human-AI Collaboration in Data Storytelling
Haotian Li
Yun Wang
Q. V. Liao
Huamin Qu
55
23
0
17 Apr 2023
Tracing and Visualizing Human-ML/AI Collaborative Processes through Artifacts of Data Work
Jennifer Rogers
Anamaria Crisan
16
7
0
05 Apr 2023
Addressing UX Practitioners' Challenges in Designing ML Applications: an Interactive Machine Learning Approach
K. J. Kevin Feng
David W. McDonald
HAI
17
11
0
23 Feb 2023
AutoML in The Wild: Obstacles, Workarounds, and Expectations
Yuan Sun
Qiurong Song
Xinning Gui
Fenglong Ma
Ting Wang
21
13
0
21 Feb 2023
Out of Context: Investigating the Bias and Fairness Concerns of "Artificial Intelligence as a Service"
Kornel Lewicki
M. S. Lee
Jennifer Cobbe
Jatinder Singh
31
21
0
02 Feb 2023
The Grind for Good Data: Understanding ML Practitioners' Struggles and Aspirations in Making Good Data
Inha Cha
Juhyun Oh
Cheul Young Park
Jiyoon Han
Hwalsuk Lee
29
2
0
28 Nov 2022
Operationalizing Machine Learning: An Interview Study
Shreya Shankar
Rolando Garcia
J. M. Hellerstein
Aditya G. Parameswaran
68
51
0
16 Sep 2022
An Empirical Study on the Usage of Automated Machine Learning Tools
Forough Majidi
Moses Openja
Foutse Khomh
Heng Li
42
14
0
28 Aug 2022
Telling Stories from Computational Notebooks: AI-Assisted Presentation Slides Creation for Presenting Data Science Work
Chengbo Zheng
Dakuo Wang
A. Wang
Xiaojuan Ma
17
52
0
21 Mar 2022
Automated Evolutionary Approach for the Design of Composite Machine Learning Pipelines
Nikolay O. Nikitin
Pavel Vychuzhanin
M. Sarafanov
Iana S. Polonskaia
I. Revin
Irina V. Barabanova
G. Maximov
Anna V. Kaluzhnaya
A. Boukhanovsky
18
55
0
26 Jun 2021
Demystifying a Dark Art: Understanding Real-World Machine Learning Model Development
Angela Lee
Doris Xin
D. Lee
Aditya G. Parameswaran
HAI
49
12
0
04 May 2020
Human-AI Collaboration in Data Science: Exploring Data Scientists' Perceptions of Automated AI
Dakuo Wang
Justin D. Weisz
Michael J. Muller
Parikshit Ram
Werner Geyer
Casey Dugan
Y. Tausczik
Horst Samulowitz
Alexander G. Gray
178
308
0
05 Sep 2019
1