Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.04719
Cited By
Expanding Explainability: Towards Social Transparency in AI systems
12 January 2021
Upol Ehsan
Q. V. Liao
Michael J. Muller
Mark O. Riedl
Justin D. Weisz
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Expanding Explainability: Towards Social Transparency in AI systems"
31 / 31 papers shown
Title
Perils of Label Indeterminacy: A Case Study on Prediction of Neurological Recovery After Cardiac Arrest
Jakob Schoeffer
Maria De-Arteaga
Jonathan Elmer
417
0
0
05 Apr 2025
Assistance or Disruption? Exploring and Evaluating the Design and Trade-offs of Proactive AI Programming Support
Kevin Pu
Daniel Lazaro
Ian Arawjo
Haijun Xia
Ziang Xiao
Tovi Grossman
Yan Chen
115
5
0
25 Feb 2025
Revisiting Rogers' Paradox in the Context of Human-AI Interaction
Katherine M. Collins
Umang Bhatt
Ilia Sucholutsky
127
1
0
16 Jan 2025
Bridging Today and the Future of Humanity: AI Safety in 2024 and Beyond
Shanshan Han
148
1
0
09 Oct 2024
ShapG: new feature importance method based on the Shapley value
Chi Zhao
Jing Liu
Elena Parilina
FAtt
253
4
0
29 Jun 2024
Path To Gain Functional Transparency In Artificial Intelligence With Meaningful Explainability
Md. Tanzib Hosain
Md. Mehedi Hasan Anik
Sadman Rafi̇
Rana Tabassum
Khaleque Insi̇a
Md. Mehrab Siddiky
40
7
0
13 Oct 2023
Why is AI not a Panacea for Data Workers? An Interview Study on Human-AI Collaboration in Data Storytelling
Haotian Li
Yun Wang
Q. V. Liao
Huamin Qu
117
23
0
17 Apr 2023
Decolonial AI: Decolonial Theory as Sociotechnical Foresight in Artificial Intelligence
Shakir Mohamed
Marie-Therese Png
William S. Isaac
90
406
0
08 Jul 2020
Human Factors in Model Interpretability: Industry Practices, Challenges, and Needs
Sungsoo Ray Hong
Jessica Hullman
E. Bertini
HAI
73
194
0
23 Apr 2020
Human-Centered Artificial Intelligence: Reliable, Safe & Trustworthy
B. Shneiderman
58
701
0
10 Feb 2020
Human-centered Explainable AI: Towards a Reflective Sociotechnical Approach
Upol Ehsan
Mark O. Riedl
55
217
0
04 Feb 2020
Evaluating Saliency Map Explanations for Convolutional Neural Networks: A User Study
Ahmed Alqaraawi
M. Schuessler
Philipp Weiß
Enrico Costanza
N. Bianchi-Berthouze
AAML
FAtt
XAI
61
200
0
03 Feb 2020
Proxy Tasks and Subjective Measures Can Be Misleading in Evaluating Explainable AI Systems
Zana Buçinca
Phoebe Lin
Krzysztof Z. Gajos
Elena L. Glassman
ELM
73
284
0
22 Jan 2020
"Why is 'Chicago' deceptive?" Towards Building Model-Driven Tutorials for Humans
Vivian Lai
Han Liu
Chenhao Tan
78
141
0
14 Jan 2020
Questioning the AI: Informing Design Practices for Explainable AI User Experiences
Q. V. Liao
D. Gruen
Sarah Miller
127
720
0
08 Jan 2020
Effect of Confidence and Explanation on Accuracy and Trust Calibration in AI-Assisted Decision Making
Yunfeng Zhang
Q. V. Liao
Rachel K. E. Bellamy
83
677
0
07 Jan 2020
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
121
6,269
0
22 Oct 2019
What does it mean to solve the problem of discrimination in hiring? Social, technical and legal perspectives from the UK on automated hiring systems
Javier Sánchez-Monedero
L. Dencik
L. Edwards
72
136
0
28 Sep 2019
One Explanation Does Not Fit All: A Toolkit and Taxonomy of AI Explainability Techniques
Vijay Arya
Rachel K. E. Bellamy
Pin-Yu Chen
Amit Dhurandhar
Michael Hind
...
Karthikeyan Shanmugam
Moninder Singh
Kush R. Varshney
Dennis L. Wei
Yunfeng Zhang
XAI
67
393
0
06 Sep 2019
explAIner: A Visual Analytics Framework for Interactive and Explainable Machine Learning
Thilo Spinner
U. Schlegel
H. Schäfer
Mennatallah El-Assady
HAI
65
237
0
29 Jul 2019
Unremarkable AI: Fitting Intelligent Decision Support into Critical, Clinical Decision-Making Processes
Qian Yang
Aaron Steinfeld
John Zimmerman
49
236
0
21 Apr 2019
Automated Rationale Generation: A Technique for Explainable AI and its Effects on Human Perceptions
Upol Ehsan
Pradyumna Tambwekar
Larry Chan
Brent Harrison
Mark O. Riedl
97
243
0
11 Jan 2019
TED: Teaching AI to Explain its Decisions
Michael Hind
Dennis L. Wei
Murray Campbell
Noel Codella
Amit Dhurandhar
Aleksandra Mojsilović
Karthikeyan N. Ramamurthy
Kush R. Varshney
56
110
0
12 Nov 2018
Explaining Explanations in AI
Brent Mittelstadt
Chris Russell
Sandra Wachter
XAI
99
667
0
04 Nov 2018
Explaining Explanations: An Overview of Interpretability of Machine Learning
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
XAI
95
1,862
0
31 May 2018
Explanation Methods in Deep Learning: Users, Values, Concerns and Challenges
Gabrielle Ras
Marcel van Gerven
W. Haselager
XAI
102
219
0
20 Mar 2018
The Challenge of Crafting Intelligible Intelligence
Daniel S. Weld
Gagan Bansal
56
244
0
09 Mar 2018
Manipulating and Measuring Model Interpretability
Forough Poursabzi-Sangdeh
D. Goldstein
Jake M. Hofman
Jennifer Wortman Vaughan
Hanna M. Wallach
91
698
0
21 Feb 2018
Explanation in Artificial Intelligence: Insights from the Social Sciences
Tim Miller
XAI
247
4,265
0
22 Jun 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
402
3,798
0
28 Feb 2017
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
183
3,701
0
10 Jun 2016
1