ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.03906
  4. Cited By
Scaling Up Bayesian Uncertainty Quantification for Inverse Problems
  using Deep Neural Networks

Scaling Up Bayesian Uncertainty Quantification for Inverse Problems using Deep Neural Networks

11 January 2021
Shiwei Lan
Shuyi Li
B. Shahbaba
    UQCV
    BDL
ArXivPDFHTML

Papers citing "Scaling Up Bayesian Uncertainty Quantification for Inverse Problems using Deep Neural Networks"

2 / 2 papers shown
Title
Good Things Come in Pairs: Paired Autoencoders for Inverse Problems
Good Things Come in Pairs: Paired Autoencoders for Inverse Problems
Matthias Chung
B. Peters
Michael Solomon
31
0
0
10 May 2025
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
185
3,262
0
09 Jun 2012
1