Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.03705
Cited By
FedAR: Activity and Resource-Aware Federated Learning Model for Distributed Mobile Robots
11 January 2021
Ahmed Imteaj
M. Amini
Re-assign community
ArXiv
PDF
HTML
Papers citing
"FedAR: Activity and Resource-Aware Federated Learning Model for Distributed Mobile Robots"
23 / 23 papers shown
Title
TriplePlay: Enhancing Federated Learning with CLIP for Non-IID Data and Resource Efficiency
Ahmed Imteaj
Md Zarif Hossain
Saika Zaman
Abdur R. Shahid
VLM
21
1
0
09 Sep 2024
Combining Federated Learning and Control: A Survey
Jakob Weber
Markus Gurtner
A. Lobe
Adrian Trachte
Andreas Kugi
FedML
AI4CE
31
2
0
12 Jul 2024
Context-Aware Orchestration of Energy-Efficient Gossip Learning Schemes
Mina Aghaei Dinani
Adrian Holzer
Hung Nguyen
M. Marsan
Gianluca Rizzo
30
0
0
18 Apr 2024
Dependable Distributed Training of Compressed Machine Learning Models
F. Malandrino
G. Giacomo
Marco Levorato
C. Chiasserini
37
0
0
22 Feb 2024
Towards Reliable Participation in UAV-Enabled Federated Edge Learning on Non-IID Data
Youssra Cheriguene
Wael Jaafar
H. Yanikomeroglu
C. A. Kerrache
28
7
0
16 Dec 2023
FedCompass: Efficient Cross-Silo Federated Learning on Heterogeneous Client Devices using a Computing Power Aware Scheduler
Zilinghan Li
Pranshu Chaturvedi
Shilan He
Han-qiu Chen
Gagandeep Singh
Volodymyr V. Kindratenko
Eliu A. Huerta
Kibaek Kim
Ravi K. Madduri
FedML
36
9
0
26 Sep 2023
Federated Learning for Computationally-Constrained Heterogeneous Devices: A Survey
Kilian Pfeiffer
Martin Rapp
R. Khalili
J. Henkel
FedML
19
63
0
18 Jul 2023
Trustworthy Federated Learning: A Survey
A. Tariq
M. Serhani
F. Sallabi
Tariq Qayyum
E. Barka
K. Shuaib
FedML
32
9
0
19 May 2023
FedAVO: Improving Communication Efficiency in Federated Learning with African Vultures Optimizer
Md Zarif Hossain
Ahmed Imteaj
FedML
29
5
0
02 May 2023
A Survey on Secure and Private Federated Learning Using Blockchain: Theory and Application in Resource-constrained Computing
Ervin Moore
Ahmed Imteaj
S. Rezapour
M. Amini
33
18
0
24 Mar 2023
Async-HFL: Efficient and Robust Asynchronous Federated Learning in Hierarchical IoT Networks
Xiaofan Yu
L. Cherkasova
Hars Vardhan
Quanling Zhao
Emily Ekaireb
Xiyuan Zhang
A. Mazumdar
T. Rosing
17
24
0
17 Jan 2023
Unexpectedly Useful: Convergence Bounds And Real-World Distributed Learning
F. Malandrino
C. Chiasserini
FedML
14
0
0
05 Dec 2022
Matching DNN Compression and Cooperative Training with Resources and Data Availability
F. Malandrino
G. Giacomo
Armin Karamzade
Marco Levorato
C. Chiasserini
37
9
0
02 Dec 2022
Latency Aware Semi-synchronous Client Selection and Model Aggregation for Wireless Federated Learning
Liang Yu
Xiang Sun
Rana Albelaihi
Chen Yi
FedML
32
13
0
19 Oct 2022
A Survey on Heterogeneous Federated Learning
Dashan Gao
Xin Yao
Qian Yang
FedML
27
58
0
10 Oct 2022
Towards Efficient Communications in Federated Learning: A Contemporary Survey
Zihao Zhao
Yuzhu Mao
Yang Liu
Linqi Song
Ouyang Ye
Xinlei Chen
Wenbo Ding
FedML
51
59
0
02 Aug 2022
Pisces: Efficient Federated Learning via Guided Asynchronous Training
Zhifeng Jiang
Wei Wang
Baochun Li
Bo-wen Li
FedML
21
24
0
18 Jun 2022
Edge Learning for B5G Networks with Distributed Signal Processing: Semantic Communication, Edge Computing, and Wireless Sensing
Wei Xu
Zhaohui Yang
Derrick Wing Kwan Ng
Marco Levorato
Yonina C. Eldar
Mérouane Debbah
28
398
0
01 Jun 2022
FedLGA: Towards System-Heterogeneity of Federated Learning via Local Gradient Approximation
Xingyu Li
Zhe Qu
Bo Tang
Zhuo Lu
FedML
33
25
0
22 Dec 2021
Asynchronous Federated Learning on Heterogeneous Devices: A Survey
Chenhao Xu
Youyang Qu
Yong Xiang
Longxiang Gao
FedML
101
241
0
09 Sep 2021
Towards open and expandable cognitive AI architectures for large-scale multi-agent human-robot collaborative learning
Georgios Th. Papadopoulos
M. Antona
C. Stephanidis
AI4CE
22
24
0
15 Dec 2020
FedNER: Privacy-preserving Medical Named Entity Recognition with Federated Learning
Suyu Ge
Fangzhao Wu
Chuhan Wu
Tao Qi
Yongfeng Huang
Xing Xie
158
56
0
20 Mar 2020
Threats to Federated Learning: A Survey
Lingjuan Lyu
Han Yu
Qiang Yang
FedML
202
434
0
04 Mar 2020
1