ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.03079
  4. Cited By
Spatiotemporal blocking of the bouncy particle sampler for efficient
  inference in state space models

Spatiotemporal blocking of the bouncy particle sampler for efficient inference in state space models

8 January 2021
Jacob Vorstrup Goldman
Sumeetpal S. Singh
ArXivPDFHTML

Papers citing "Spatiotemporal blocking of the bouncy particle sampler for efficient inference in state space models"

3 / 3 papers shown
Title
Iterated Block Particle Filter for High-dimensional Parameter Learning:
  Beating the Curse of Dimensionality
Iterated Block Particle Filter for High-dimensional Parameter Learning: Beating the Curse of Dimensionality
Ning Ning
E. Ionides
14
13
0
20 Oct 2021
Divide-and-Conquer Bayesian Inference in Hidden Markov Models
Divide-and-Conquer Bayesian Inference in Hidden Markov Models
Chunlei Wang
Sanvesh Srivastava
27
9
0
30 May 2021
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis
  of Big Data
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data
J. Bierkens
Paul Fearnhead
Gareth O. Roberts
58
231
0
11 Jul 2016
1