Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.02930
Cited By
Symmetry-adapted graph neural networks for constructing molecular dynamics force fields
8 January 2021
Zun Wang
Chong Wang
Sibo Zhao
Shiqiao Du
Yong Xu
B. Gu
W. Duan
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Symmetry-adapted graph neural networks for constructing molecular dynamics force fields"
5 / 5 papers shown
Title
Graph neural networks for materials science and chemistry
Patrick Reiser
Marlen Neubert
André Eberhard
Luca Torresi
Chen Zhou
...
Houssam Metni
Clint van Hoesel
Henrik Schopmans
T. Sommer
Pascal Friederich
GNN
AI4CE
59
377
0
05 Aug 2022
A simple equivariant machine learning method for dynamics based on scalars
Weichi Yao
Kate Storey-Fisher
D. Hogg
Soledad Villar
AI4CE
44
9
0
07 Oct 2021
Heterogeneous relational message passing networks for molecular dynamics simulations
Zun Wang
Chong Wang
Sibo Zhao
Yong Xu
Shaogang Hao
Chang-Yu Hsieh
B. Gu
W. Duan
24
26
0
02 Sep 2021
Scalars are universal: Equivariant machine learning, structured like classical physics
Soledad Villar
D. Hogg
Kate Storey-Fisher
Weichi Yao
Ben Blum-Smith
PINN
AI4CE
29
133
0
11 Jun 2021
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
295
1,956
0
09 Jun 2018
1