ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.02323
  4. Cited By
Diminishing Uncertainty within the Training Pool: Active Learning for
  Medical Image Segmentation

Diminishing Uncertainty within the Training Pool: Active Learning for Medical Image Segmentation

7 January 2021
V. Nath
Dong Yang
Bennett A. Landman
Daguang Xu
H. Roth
ArXivPDFHTML

Papers citing "Diminishing Uncertainty within the Training Pool: Active Learning for Medical Image Segmentation"

10 / 10 papers shown
Title
Correlation-aware active learning for surgery video segmentation
Correlation-aware active learning for surgery video segmentation
Fei Wu
Pablo Márquez-Neila
Mingyi Zheng
Hedyeh Rafii-Tari
Raphael Sznitman
31
3
0
15 Nov 2023
A review of uncertainty quantification in medical image analysis:
  probabilistic and non-probabilistic methods
A review of uncertainty quantification in medical image analysis: probabilistic and non-probabilistic methods
Ling Huang
S. Ruan
Yucheng Xing
Mengling Feng
41
20
0
09 Oct 2023
Hybrid Representation-Enhanced Sampling for Bayesian Active Learning in
  Musculoskeletal Segmentation of Lower Extremities
Hybrid Representation-Enhanced Sampling for Bayesian Active Learning in Musculoskeletal Segmentation of Lower Extremities
Ganping Li
Yoshito Otake
Mazen Soufi
M. Taniguchi
Masahide Yagi
N. Ichihashi
Keisuke Uemura
Masaki Takao
Nobuhiko Sugano
Yoshinobu Sato
29
3
0
26 Jul 2023
TAAL: Test-time Augmentation for Active Learning in Medical Image
  Segmentation
TAAL: Test-time Augmentation for Active Learning in Medical Image Segmentation
Mélanie Gaillochet
Christian Desrosiers
H. Lombaert
19
11
0
16 Jan 2023
Warm Start Active Learning with Proxy Labels \& Selection via
  Semi-Supervised Fine-Tuning
Warm Start Active Learning with Proxy Labels \& Selection via Semi-Supervised Fine-Tuning
V. Nath
Dong Yang
H. Roth
Daguang Xu
41
25
0
13 Sep 2022
Challenges for machine learning in clinical translation of big data
  imaging studies
Challenges for machine learning in clinical translation of big data imaging studies
Nicola K. Dinsdale
Emma Bluemke
V. Sundaresan
M. Jenkinson
Stephen Smith
Ana I. L. Namburete
AI4CE
32
41
0
07 Jul 2021
Bayesian Model-Agnostic Meta-Learning
Bayesian Model-Agnostic Meta-Learning
Taesup Kim
Jaesik Yoon
Ousmane Amadou Dia
Sungwoong Kim
Yoshua Bengio
Sungjin Ahn
UQCV
BDL
202
498
0
11 Jun 2018
Deep CNN ensembles and suggestive annotations for infant brain MRI
  segmentation
Deep CNN ensembles and suggestive annotations for infant brain MRI segmentation
Jose Dolz
Christian Desrosiers
Li Wang
Jing Yuan
D. Shen
Ismail Ben Ayed
3DV
45
113
0
14 Dec 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1