Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.01998
Cited By
v1
v2 (latest)
Can Transfer Neuroevolution Tractably Solve Your Differential Equations?
6 January 2021
Jian Cheng Wong
Abhishek Gupta
Yew-Soon Ong
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Can Transfer Neuroevolution Tractably Solve Your Differential Equations?"
20 / 20 papers shown
Title
Scaling MAP-Elites to Deep Neuroevolution
Cédric Colas
Joost Huizinga
Vashisht Madhavan
Jeff Clune
64
88
0
03 Mar 2020
D3M: A deep domain decomposition method for partial differential equations
Ke Li
Keju Tang
Tianfan Wu
Qifeng Liao
AI4CE
62
116
0
24 Sep 2019
Machine Discovery of Partial Differential Equations from Spatiotemporal Data
Ye Yuan
Junlin Li
Liang Li
Frank Jiang
Xiuchuan Tang
...
J. Gonçalves
H. Voss
Xiuting Li
J. Kurths
Han Ding
AI4CE
39
9
0
15 Sep 2019
Transfer learning enhanced physics informed neural network for phase-field modeling of fracture
S. Goswami
C. Anitescu
S. Chakraborty
Timon Rabczuk
PINN
78
610
0
04 Jul 2019
Modeling the Dynamics of PDE Systems with Physics-Constrained Deep Auto-Regressive Networks
N. Geneva
N. Zabaras
AI4CE
69
275
0
13 Jun 2019
Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks
Georgios Kissas
Yibo Yang
E. Hwuang
W. Witschey
John A. Detre
P. Perdikaris
AI4CE
123
373
0
13 May 2019
AIR5: Five Pillars of Artificial Intelligence Research
Yew-Soon Ong
Abhishek Gupta
54
29
0
30 Dec 2018
Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
Yibo Yang
P. Perdikaris
AI4CE
PINN
129
358
0
09 Nov 2018
Robust Optimization through Neuroevolution
Paolo Pagliuca
S. Nolfi
50
13
0
02 Oct 2018
Deep Learning of Vortex Induced Vibrations
M. Raissi
Zhicheng Wang
M. Triantafyllou
George Karniadakis
AI4CE
60
376
0
26 Aug 2018
Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations
M. Raissi
PINN
AI4CE
120
756
0
20 Jan 2018
ES Is More Than Just a Traditional Finite-Difference Approximator
Joel Lehman
Jay Chen
Jeff Clune
Kenneth O. Stanley
75
89
0
18 Dec 2017
On the Relationship Between the OpenAI Evolution Strategy and Stochastic Gradient Descent
Xingwen Zhang
Jeff Clune
Kenneth O. Stanley
59
58
0
18 Dec 2017
A unified deep artificial neural network approach to partial differential equations in complex geometries
Jens Berg
K. Nystrom
AI4CE
63
586
0
17 Nov 2017
The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems
E. Weinan
Ting Yu
123
1,389
0
30 Sep 2017
DGM: A deep learning algorithm for solving partial differential equations
Justin A. Sirignano
K. Spiliopoulos
AI4CE
93
2,067
0
24 Aug 2017
Evolution Strategies as a Scalable Alternative to Reinforcement Learning
Tim Salimans
Jonathan Ho
Xi Chen
Szymon Sidor
Ilya Sutskever
115
1,541
0
10 Mar 2017
PathNet: Evolution Channels Gradient Descent in Super Neural Networks
Chrisantha Fernando
Dylan Banarse
Charles Blundell
Yori Zwols
David R Ha
Andrei A. Rusu
Alexander Pritzel
Daan Wierstra
75
881
0
30 Jan 2017
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
168
2,816
0
20 Feb 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,312
0
22 Dec 2014
1