ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.01134
  4. Cited By
Does Invariant Risk Minimization Capture Invariance?

Does Invariant Risk Minimization Capture Invariance?

4 January 2021
Pritish Kamath
Akilesh Tangella
Danica J. Sutherland
Nathan Srebro
    OOD
ArXivPDFHTML

Papers citing "Does Invariant Risk Minimization Capture Invariance?"

49 / 99 papers shown
Title
Learning Invariant Representations under General Interventions on the
  Response
Learning Invariant Representations under General Interventions on the Response
Kang Du
Yu Xiang
OOD
22
8
0
22 Aug 2022
Counterfactual Supervision-based Information Bottleneck for
  Out-of-Distribution Generalization
Counterfactual Supervision-based Information Bottleneck for Out-of-Distribution Generalization
Bin Deng
K. Jia
OOD
7
1
0
16 Aug 2022
The Causal Structure of Domain Invariant Supervised Representation
  Learning
The Causal Structure of Domain Invariant Supervised Representation Learning
Zihao W. Wang
Victor Veitch
CML
OOD
6
3
0
15 Aug 2022
Diversity Boosted Learning for Domain Generalization with Large Number
  of Domains
Diversity Boosted Learning for Domain Generalization with Large Number of Domains
Xinlin Leng
Xiaoying Tang
Yatao Bian
AI4CE
OOD
17
0
0
28 Jul 2022
Repeated Environment Inference for Invariant Learning
Repeated Environment Inference for Invariant Learning
Aayush Mishra
Anqi Liu
BDL
OOD
14
0
0
26 Jul 2022
Pareto Invariant Risk Minimization: Towards Mitigating the Optimization
  Dilemma in Out-of-Distribution Generalization
Pareto Invariant Risk Minimization: Towards Mitigating the Optimization Dilemma in Out-of-Distribution Generalization
Yongqiang Chen
Kaiwen Zhou
Yatao Bian
Binghui Xie
Bing Wu
...
Kaili Ma
Han Yang
P. Zhao
Bo Han
James Cheng
OOD
OODD
11
33
0
15 Jun 2022
Causal Balancing for Domain Generalization
Causal Balancing for Domain Generalization
Xinyi Wang
Michael Stephen Saxon
Jiachen Li
Hongyang R. Zhang
Kun Zhang
William Yang Wang
OOD
CML
29
21
0
10 Jun 2022
Causal Discovery in Heterogeneous Environments Under the Sparse
  Mechanism Shift Hypothesis
Causal Discovery in Heterogeneous Environments Under the Sparse Mechanism Shift Hypothesis
Ronan Perry
Julius von Kügelgen
Bernhard Schölkopf
30
48
0
04 Jun 2022
PAC Generalization via Invariant Representations
PAC Generalization via Invariant Representations
Advait Parulekar
Karthikeyan Shanmugam
Sanjay Shakkottai
24
3
0
30 May 2022
The Missing Invariance Principle Found -- the Reciprocal Twin of
  Invariant Risk Minimization
The Missing Invariance Principle Found -- the Reciprocal Twin of Invariant Risk Minimization
Dongsung Huh
A. Baidya
OOD
14
8
0
29 May 2022
Invariance Learning based on Label Hierarchy
Invariance Learning based on Label Hierarchy
S. Toyota
Kenji Fukumizu
OOD
17
1
0
29 Mar 2022
Rich Feature Construction for the Optimization-Generalization Dilemma
Rich Feature Construction for the Optimization-Generalization Dilemma
Jianyu Zhang
David Lopez-Paz
Léon Bottou
19
36
0
24 Mar 2022
Out-of-distribution Generalization with Causal Invariant Transformations
Out-of-distribution Generalization with Causal Invariant Transformations
Ruoyu Wang
Mingyang Yi
Zhitang Chen
Shengyu Zhu
OOD
OODD
19
56
0
22 Mar 2022
Fine-Tuning can Distort Pretrained Features and Underperform
  Out-of-Distribution
Fine-Tuning can Distort Pretrained Features and Underperform Out-of-Distribution
Ananya Kumar
Aditi Raghunathan
Robbie Jones
Tengyu Ma
Percy Liang
OODD
39
640
0
21 Feb 2022
Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient
  for Out-of-Distribution Generalization
Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient for Out-of-Distribution Generalization
Elan Rosenfeld
Pradeep Ravikumar
Andrej Risteski
OOD
18
78
0
14 Feb 2022
Minimax Regret Optimization for Robust Machine Learning under
  Distribution Shift
Minimax Regret Optimization for Robust Machine Learning under Distribution Shift
Alekh Agarwal
Tong Zhang
OOD
6
28
0
11 Feb 2022
Correcting Confounding via Random Selection of Background Variables
Correcting Confounding via Random Selection of Background Variables
You-Lin Chen
Lenon Minorics
Dominik Janzing
CML
16
4
0
04 Feb 2022
Provable Domain Generalization via Invariant-Feature Subspace Recovery
Provable Domain Generalization via Invariant-Feature Subspace Recovery
Haoxiang Wang
Haozhe Si
Bo-wen Li
Han Zhao
OOD
51
32
0
30 Jan 2022
Discovering Invariant Rationales for Graph Neural Networks
Discovering Invariant Rationales for Graph Neural Networks
Yingmin Wu
Xiang Wang
An Zhang
Xiangnan He
Tat-Seng Chua
OOD
AI4CE
91
222
0
30 Jan 2022
Conditional entropy minimization principle for learning domain invariant
  representation features
Conditional entropy minimization principle for learning domain invariant representation features
Thuan Q. Nguyen
Boyang Lyu
Prakash Ishwar
matthias. scheutz
Shuchin Aeron
OOD
22
7
0
25 Jan 2022
Debiased Graph Neural Networks with Agnostic Label Selection Bias
Debiased Graph Neural Networks with Agnostic Label Selection Bias
Shaohua Fan
Xiao Wang
Chuan Shi
Kun Kuang
Nian Liu
Bai Wang
AI4CE
29
38
0
19 Jan 2022
Balancing Fairness and Robustness via Partial Invariance
Balancing Fairness and Robustness via Partial Invariance
Moulik Choraria
Ibtihal Ferwana
Ankur Mani
L. Varshney
OOD
20
1
0
17 Dec 2021
Towards Principled Disentanglement for Domain Generalization
Towards Principled Disentanglement for Domain Generalization
Hanlin Zhang
Yi-Fan Zhang
Weiyang Liu
Adrian Weller
Bernhard Schölkopf
Eric P. Xing
OOD
23
112
0
27 Nov 2021
Generalizing Graph Neural Networks on Out-Of-Distribution Graphs
Generalizing Graph Neural Networks on Out-Of-Distribution Graphs
Shaohua Fan
Xiao Wang
Chuan Shi
Peng Cui
Bai Wang
CML
OOD
OODD
AI4CE
37
81
0
20 Nov 2021
Optimization-based Causal Estimation from Heterogenous Environments
Optimization-based Causal Estimation from Heterogenous Environments
Mingzhang Yin
Yixin Wang
David M. Blei
OOD
82
17
0
24 Sep 2021
Task Guided Compositional Representation Learning for ZDA
Task Guided Compositional Representation Learning for ZDA
Shuang Liu
Mete Ozay
OOD
20
0
0
13 Sep 2021
Fishr: Invariant Gradient Variances for Out-of-Distribution
  Generalization
Fishr: Invariant Gradient Variances for Out-of-Distribution Generalization
Alexandre Ramé
Corentin Dancette
Matthieu Cord
OOD
33
204
0
07 Sep 2021
Towards Out-Of-Distribution Generalization: A Survey
Towards Out-Of-Distribution Generalization: A Survey
Jiashuo Liu
Zheyan Shen
Yue He
Xingxuan Zhang
Renzhe Xu
Han Yu
Peng Cui
CML
OOD
29
513
0
31 Aug 2021
Secure Domain Adaptation with Multiple Sources
Secure Domain Adaptation with Multiple Sources
Serban Stan
Mohammad Rostami
25
13
0
23 Jun 2021
Near-Optimal Linear Regression under Distribution Shift
Near-Optimal Linear Regression under Distribution Shift
Qi Lei
Wei Hu
Jason D. Lee
OOD
11
40
0
23 Jun 2021
Finding Valid Adjustments under Non-ignorability with Minimal DAG
  Knowledge
Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge
Abhin Shah
Karthikeyan Shanmugam
Kartik Ahuja
CML
29
12
0
22 Jun 2021
Iterative Feature Matching: Toward Provable Domain Generalization with
  Logarithmic Environments
Iterative Feature Matching: Toward Provable Domain Generalization with Logarithmic Environments
Yining Chen
Elan Rosenfeld
Mark Sellke
Tengyu Ma
Andrej Risteski
OOD
23
32
0
18 Jun 2021
On Invariance Penalties for Risk Minimization
On Invariance Penalties for Risk Minimization
Kia Khezeli
Arno Blaas
Frank Soboczenski
N. Chia
John Kalantari
14
16
0
17 Jun 2021
Contextualizing Meta-Learning via Learning to Decompose
Contextualizing Meta-Learning via Learning to Decompose
Han-Jia Ye
Da-Wei Zhou
Lanqing Hong
Zhenguo Li
Xiu-Shen Wei
De-Chuan Zhan
13
6
0
15 Jun 2021
Invariance Principle Meets Information Bottleneck for
  Out-of-Distribution Generalization
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization
Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Jean-Christophe Gagnon-Audet
Yoshua Bengio
Ioannis Mitliagkas
Irina Rish
OOD
13
248
0
11 Jun 2021
Invariant Information Bottleneck for Domain Generalization
Invariant Information Bottleneck for Domain Generalization
Bo-wen Li
Yifei Shen
Yezhen Wang
Wenzhen Zhu
Colorado Reed
Jun Zhang
Dongsheng Li
Kurt Keutzer
Han Zhao
OOD
16
105
0
11 Jun 2021
Towards a Theoretical Framework of Out-of-Distribution Generalization
Towards a Theoretical Framework of Out-of-Distribution Generalization
Haotian Ye
Chuanlong Xie
Tianle Cai
Ruichen Li
Zhenguo Li
Liwei Wang
OODD
OOD
50
104
0
08 Jun 2021
A call for better unit testing for invariant risk minimisation
A call for better unit testing for invariant risk minimisation
Chunyang Xiao
Pranava Madhyastha
8
1
0
06 Jun 2021
Can Subnetwork Structure be the Key to Out-of-Distribution
  Generalization?
Can Subnetwork Structure be the Key to Out-of-Distribution Generalization?
Dinghuai Zhang
Kartik Ahuja
Yilun Xu
Yisen Wang
Aaron Courville
OOD
18
95
0
05 Jun 2021
On the benefits of representation regularization in invariance based
  domain generalization
On the benefits of representation regularization in invariance based domain generalization
Changjian Shui
Boyu Wang
Christian Gagné
OOD
4
25
0
30 May 2021
Meta-Learned Invariant Risk Minimization
Meta-Learned Invariant Risk Minimization
Jun-Hyun Bae
Inchul Choi
Minho Lee
OOD
29
10
0
24 Mar 2021
An Empirical Framework for Domain Generalization in Clinical Settings
An Empirical Framework for Domain Generalization in Clinical Settings
Haoran Zhang
Natalie Dullerud
Laleh Seyyed-Kalantari
Q. Morris
Shalmali Joshi
Marzyeh Ghassemi
OOD
AI4CE
10
59
0
20 Mar 2021
Regularizing towards Causal Invariance: Linear Models with Proxies
Regularizing towards Causal Invariance: Linear Models with Proxies
Michael Oberst
Nikolaj Thams
J. Peters
David Sontag
OOD
17
23
0
03 Mar 2021
Nonlinear Invariant Risk Minimization: A Causal Approach
Nonlinear Invariant Risk Minimization: A Causal Approach
Chaochao Lu
Yuhuai Wu
Jośe Miguel Hernández-Lobato
Bernhard Schölkopf
CML
OOD
27
50
0
24 Feb 2021
Model-Based Domain Generalization
Model-Based Domain Generalization
Alexander Robey
George J. Pappas
Hamed Hassani
OOD
43
129
0
23 Feb 2021
On Calibration and Out-of-domain Generalization
On Calibration and Out-of-domain Generalization
Yoav Wald
Amir Feder
D. Greenfeld
Uri Shalit
OODD
11
151
0
20 Feb 2021
Environment Inference for Invariant Learning
Environment Inference for Invariant Learning
Elliot Creager
J. Jacobsen
R. Zemel
OOD
6
371
0
14 Oct 2020
When is invariance useful in an Out-of-Distribution Generalization
  problem ?
When is invariance useful in an Out-of-Distribution Generalization problem ?
Masanori Koyama
Shoichiro Yamaguchi
OOD
26
65
0
04 Aug 2020
Invariant Rationalization
Invariant Rationalization
Shiyu Chang
Yang Zhang
Mo Yu
Tommi Jaakkola
179
201
0
22 Mar 2020
Previous
12