ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.00633
  4. Cited By
Outcome-Explorer: A Causality Guided Interactive Visual Interface for
  Interpretable Algorithmic Decision Making

Outcome-Explorer: A Causality Guided Interactive Visual Interface for Interpretable Algorithmic Decision Making

3 January 2021
Md. Naimul Hoque
Klaus Mueller
    CML
ArXivPDFHTML

Papers citing "Outcome-Explorer: A Causality Guided Interactive Visual Interface for Interpretable Algorithmic Decision Making"

4 / 4 papers shown
Title
An Explainable AI Approach to Large Language Model Assisted Causal Model
  Auditing and Development
An Explainable AI Approach to Large Language Model Assisted Causal Model Auditing and Development
Yanming Zhang
Brette Fitzgibbon
Dino Garofolo
Akshith Kota
Eric Papenhausen
Klaus Mueller
CML
33
5
0
23 Dec 2023
DOMINO: Visual Causal Reasoning with Time-Dependent Phenomena
DOMINO: Visual Causal Reasoning with Time-Dependent Phenomena
Jun Wang
Klaus Mueller
CML
35
10
0
12 Mar 2023
Counterfactuals and Causability in Explainable Artificial Intelligence:
  Theory, Algorithms, and Applications
Counterfactuals and Causability in Explainable Artificial Intelligence: Theory, Algorithms, and Applications
Yu-Liang Chou
Catarina Moreira
P. Bruza
Chun Ouyang
Joaquim A. Jorge
CML
47
176
0
07 Mar 2021
ViCE: Visual Counterfactual Explanations for Machine Learning Models
ViCE: Visual Counterfactual Explanations for Machine Learning Models
Oscar Gomez
Steffen Holter
Jun Yuan
E. Bertini
AAML
57
93
0
05 Mar 2020
1