ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.15783
  4. Cited By
iGOS++: Integrated Gradient Optimized Saliency by Bilateral
  Perturbations

iGOS++: Integrated Gradient Optimized Saliency by Bilateral Perturbations

31 December 2020
Saeed Khorram
T. Lawson
Fuxin Li
    AAML
    FAtt
ArXivPDFHTML

Papers citing "iGOS++: Integrated Gradient Optimized Saliency by Bilateral Perturbations"

22 / 22 papers shown
Title
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
242
42,038
0
03 Dec 2019
Understanding Deep Networks via Extremal Perturbations and Smooth Masks
Understanding Deep Networks via Extremal Perturbations and Smooth Masks
Ruth C. Fong
Mandela Patrick
Andrea Vedaldi
AAML
50
414
0
18 Oct 2019
Visualizing Deep Networks by Optimizing with Integrated Gradients
Visualizing Deep Networks by Optimizing with Integrated Gradients
Zhongang Qi
Saeed Khorram
Fuxin Li
FAtt
38
123
0
02 May 2019
Character Region Awareness for Text Detection
Character Region Awareness for Text Detection
Youngmin Baek
Bado Lee
Dongyoon Han
Sangdoo Yun
Hwalsuk Lee
57
778
0
03 Apr 2019
Sanity Checks for Saliency Maps
Sanity Checks for Saliency Maps
Julius Adebayo
Justin Gilmer
M. Muelly
Ian Goodfellow
Moritz Hardt
Been Kim
FAtt
AAML
XAI
107
1,947
0
08 Oct 2018
RISE: Randomized Input Sampling for Explanation of Black-box Models
RISE: Randomized Input Sampling for Explanation of Black-box Models
Vitali Petsiuk
Abir Das
Kate Saenko
FAtt
111
1,164
0
19 Jun 2018
Real Time Image Saliency for Black Box Classifiers
Real Time Image Saliency for Black Box Classifiers
P. Dabkowski
Y. Gal
45
586
0
22 May 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
48
1,514
0
11 Apr 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
115
5,920
0
04 Mar 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
209
19,796
0
07 Oct 2016
Top-down Neural Attention by Excitation Backprop
Top-down Neural Attention by Excitation Backprop
Jianming Zhang
Zhe Lin
Jonathan Brandt
Xiaohui Shen
Stan Sclaroff
53
946
0
01 Aug 2016
Not Just a Black Box: Learning Important Features Through Propagating
  Activation Differences
Not Just a Black Box: Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Shcherbina
A. Kundaje
FAtt
56
782
0
05 May 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
577
16,828
0
16 Feb 2016
Learning Deep Features for Discriminative Localization
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSL
SSeg
FAtt
161
9,266
0
14 Dec 2015
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.4K
192,638
0
10 Dec 2015
Object Detectors Emerge in Deep Scene CNNs
Object Detectors Emerge in Deep Scene CNNs
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
ObjD
118
1,279
0
22 Dec 2014
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
174
4,653
0
21 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
923
99,991
0
04 Sep 2014
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
1.1K
39,383
0
01 Sep 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
166
14,831
1
21 Dec 2013
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
167
7,252
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
321
15,825
0
12 Nov 2013
1