ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.15772
  4. Cited By
Estimating Uncertainty in Neural Networks for Cardiac MRI Segmentation:
  A Benchmark Study

Estimating Uncertainty in Neural Networks for Cardiac MRI Segmentation: A Benchmark Study

31 December 2020
Matthew Ng
F. Guo
L. Biswas
S. Petersen
Stefan K. Piechnik
S. Neubauer
G. Wright
    UQCV
ArXivPDFHTML

Papers citing "Estimating Uncertainty in Neural Networks for Cardiac MRI Segmentation: A Benchmark Study"

12 / 12 papers shown
Title
Calibration and Uncertainty for multiRater Volume Assessment in multiorgan Segmentation (CURVAS) challenge results
Calibration and Uncertainty for multiRater Volume Assessment in multiorgan Segmentation (CURVAS) challenge results
Meritxell Riera-Marin
S. Ko
Julia Rodriguez-Comas
Matthias Stefan May
Zhaohong Pan
...
Anton Aubanell
Andreu Antolin
Javier Garcia-Lopez
M. A. G. Ballester
Adrian Galdran
UQCV
51
0
0
13 May 2025
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
M. Valiuddin
R. V. Sloun
C.G.A. Viviers
Peter H. N. de With
Fons van der Sommen
UQCV
96
1
0
25 Nov 2024
Counterfactuals and Uncertainty-Based Explainable Paradigm for the Automated Detection and Segmentation of Renal Cysts in Computed Tomography Images: A Multi-Center Study
Counterfactuals and Uncertainty-Based Explainable Paradigm for the Automated Detection and Segmentation of Renal Cysts in Computed Tomography Images: A Multi-Center Study
Zohaib Salahuddin
A. Ibrahim
Sheng Kuang
Y. Widaatalla
R. Miclea
...
Tom Marcelissen
Patricia Zondervan
Auke Jager
Philippe Lambin
Henry C. Woodruff
MedIm
34
0
0
07 Aug 2024
Uncertainty Quantification Metrics for Deep Regression
Uncertainty Quantification Metrics for Deep Regression
Simon Kristoffersson Lind
Ziliang Xiong
Per-Erik Forssén
Volker Kruger
UQCV
42
3
0
07 May 2024
EDUE: Expert Disagreement-Guided One-Pass Uncertainty Estimation for
  Medical Image Segmentation
EDUE: Expert Disagreement-Guided One-Pass Uncertainty Estimation for Medical Image Segmentation
Kudaibergen Abutalip
Numan Saeed
I. Sobirov
Vincent Andrearczyk
Adrien Depeursinge
Mohammad Yaqub
UQCV
35
0
0
25 Mar 2024
Uncertainty estimates for semantic segmentation: providing enhanced
  reliability for automated motor claims handling
Uncertainty estimates for semantic segmentation: providing enhanced reliability for automated motor claims handling
Jan Küchler
Daniel Kröll
S. Schoenen
Andreas Witte
UQCV
40
1
0
17 Jan 2024
A review of uncertainty quantification in medical image analysis:
  probabilistic and non-probabilistic methods
A review of uncertainty quantification in medical image analysis: probabilistic and non-probabilistic methods
Ling Huang
S. Ruan
Yucheng Xing
Mengling Feng
46
20
0
09 Oct 2023
Benchmarking Scalable Epistemic Uncertainty Quantification in Organ
  Segmentation
Benchmarking Scalable Epistemic Uncertainty Quantification in Organ Segmentation
Jadie Adams
Shireen Y. Elhabian
UQCV
21
5
0
15 Aug 2023
Influence of uncertainty estimation techniques on false-positive
  reduction in liver lesion detection
Influence of uncertainty estimation techniques on false-positive reduction in liver lesion detection
Ishaan Bhat
J. Pluim
M. Viergever
Hugo J. Kuijf
MedIm
21
4
0
22 Jun 2022
A Quantitative Comparison of Epistemic Uncertainty Maps Applied to
  Multi-Class Segmentation
A Quantitative Comparison of Epistemic Uncertainty Maps Applied to Multi-Class Segmentation
Robin Camarasa
D. Bos
J. Hendrikse
P. Nederkoorn
D. Epidemiology
D. Neurology
Department of Computer Science
UQCV
29
12
0
22 Sep 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,695
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,167
0
06 Jun 2015
1