Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.15339
Cited By
Fast covariance parameter estimation of spatial Gaussian process models using neural networks
30 December 2020
Florian Gerber
D. Nychka
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fast covariance parameter estimation of spatial Gaussian process models using neural networks"
8 / 8 papers shown
Title
LatticeVision: Image to Image Networks for Modeling Non-Stationary Spatial Data
Antony Sikorski
Michael Ivanitskiy
Nathan Lenssen
Douglas Nychka
Daniel McKenzie
DiffM
29
0
0
14 May 2025
Modeling Spatial Extremes using Non-Gaussian Spatial Autoregressive Models via Convolutional Neural Networks
Sweta Rai
D. Nychka
S. Bandyopadhyay
48
1
0
05 May 2025
Fast Likelihood-Free Parameter Estimation for Lévy Processes
Nicolas Coloma
William Kleiber
27
0
0
03 May 2025
Neural Likelihood Surfaces for Spatial Processes with Computationally Intensive or Intractable Likelihoods
Julia Walchessen
Amanda Lenzi
Mikael Kuusela
43
9
0
31 Dec 2024
When the whole is greater than the sum of its parts: Scaling black-box inference to large data settings through divide-and-conquer
Emily C. Hector
Amanda Lenzi
41
1
0
31 Dec 2024
Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks
Matthew Sainsbury-Dale
A. Zammit‐Mangion
J. Richards
Raphael Huser
36
15
0
04 Oct 2023
Spherical Poisson Point Process Intensity Function Modeling and Estimation with Measure Transport
T. L. J. Ng
A. Zammit‐Mangion
31
3
0
24 Jan 2022
Neural Networks for Parameter Estimation in Intractable Models
Amanda Lenzi
J. Bessac
J. Rudi
Michael L. Stein
BDL
26
50
0
29 Jul 2021
1