ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.14558
  4. Cited By
Gradient Descent Averaging and Primal-dual Averaging for Strongly Convex
  Optimization

Gradient Descent Averaging and Primal-dual Averaging for Strongly Convex Optimization

29 December 2020
Wei Tao
Wei Li
Zhisong Pan
Qing Tao
    MoMe
ArXivPDFHTML

Papers citing "Gradient Descent Averaging and Primal-dual Averaging for Strongly Convex Optimization"

5 / 5 papers shown
Title
Quasi-hyperbolic momentum and Adam for deep learning
Quasi-hyperbolic momentum and Adam for deep learning
Jerry Ma
Denis Yarats
ODL
84
129
0
16 Oct 2018
There Are Many Consistent Explanations of Unlabeled Data: Why You Should
  Average
There Are Many Consistent Explanations of Unlabeled Data: Why You Should Average
Ben Athiwaratkun
Marc Finzi
Pavel Izmailov
A. Wilson
202
243
0
14 Jun 2018
A simpler approach to obtaining an O(1/t) convergence rate for the
  projected stochastic subgradient method
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method
Simon Lacoste-Julien
Mark W. Schmidt
Francis R. Bach
126
259
0
10 Dec 2012
Stochastic Gradient Descent for Non-smooth Optimization: Convergence
  Results and Optimal Averaging Schemes
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
101
571
0
08 Dec 2012
Optimal Distributed Online Prediction using Mini-Batches
Optimal Distributed Online Prediction using Mini-Batches
O. Dekel
Ran Gilad-Bachrach
Ohad Shamir
Lin Xiao
179
683
0
07 Dec 2010
1