Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.14261
Cited By
A Survey on Neural Network Interpretability
28 December 2020
Yu Zhang
Peter Tiño
A. Leonardis
K. Tang
FaML
XAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Survey on Neural Network Interpretability"
42 / 42 papers shown
Title
Tuning for Trustworthiness -- Balancing Performance and Explanation Consistency in Neural Network Optimization
Alexander Hinterleitner
Thomas Bartz-Beielstein
56
0
0
12 May 2025
Deriving Equivalent Symbol-Based Decision Models from Feedforward Neural Networks
Sebastian Seidel
Uwe M. Borghoff
53
1
0
16 Apr 2025
Minimum Description Length of a Spectrum Variational Autoencoder: A Theory
Canlin Zhang
Xiuwen Liu
78
0
0
01 Apr 2025
Axiomatic Explainer Globalness via Optimal Transport
Davin Hill
Josh Bone
A. Masoomi
Max Torop
Jennifer Dy
138
1
0
13 Mar 2025
Explainable Neural Networks with Guarantees: A Sparse Estimation Approach
Antoine Ledent
Peng Liu
FAtt
205
0
0
20 Feb 2025
Uncertainty-Aware Explanations Through Probabilistic Self-Explainable Neural Networks
Jon Vadillo
Roberto Santana
J. A. Lozano
Marta Z. Kwiatkowska
BDL
AAML
105
0
0
17 Feb 2025
Beyond Label Attention: Transparency in Language Models for Automated Medical Coding via Dictionary Learning
John Wu
David Wu
Jimeng Sun
106
1
0
31 Oct 2024
Reinfier and Reintrainer: Verification and Interpretation-Driven Safe Deep Reinforcement Learning Frameworks
Zixuan Yang
Jiaqi Zheng
Guihai Chen
OffRL
55
0
0
19 Oct 2024
DILA: Dictionary Label Attention for Mechanistic Interpretability in High-dimensional Multi-label Medical Coding Prediction
John Wu
David Wu
Jimeng Sun
272
0
0
16 Sep 2024
Explainable Artificial Intelligence: A Survey of Needs, Techniques, Applications, and Future Direction
Melkamu Mersha
Khang Lam
Joseph Wood
Ali AlShami
Jugal Kalita
XAI
AI4TS
176
31
0
30 Aug 2024
Deep Learning without Global Optimization by Random Fourier Neural Networks
Owen Davis
Gianluca Geraci
Mohammad Motamed
BDL
72
0
0
16 Jul 2024
Retrievable Domain-Sensitive Feature Memory for Multi-Domain Recommendation
Yuang Zhao
Zhaocheng Du
Qinglin Jia
Linxuan Zhang
Zhenhua Dong
Ruiming Tang
104
3
0
21 May 2024
3VL: Using Trees to Improve Vision-Language Models' Interpretability
Nir Yellinek
Leonid Karlinsky
Raja Giryes
CoGe
VLM
157
4
0
28 Dec 2023
Explaining Deep Convolutional Neural Networks for Image Classification by Evolving Local Interpretable Model-agnostic Explanations
Bin Wang
Wenbin Pei
Bing Xue
Mengjie Zhang
FAtt
93
3
0
28 Nov 2022
Benchmarking and Survey of Explanation Methods for Black Box Models
F. Bodria
F. Giannotti
Riccardo Guidotti
Francesca Naretto
D. Pedreschi
S. Rinzivillo
XAI
60
224
0
25 Feb 2021
Interpretable Machine Learning -- A Brief History, State-of-the-Art and Challenges
Christoph Molnar
Giuseppe Casalicchio
B. Bischl
AI4TS
AI4CE
61
400
0
19 Oct 2020
Explanations can be manipulated and geometry is to blame
Ann-Kathrin Dombrowski
Maximilian Alber
Christopher J. Anders
M. Ackermann
K. Müller
Pan Kessel
AAML
FAtt
49
329
0
19 Jun 2019
Unmasking Clever Hans Predictors and Assessing What Machines Really Learn
Sebastian Lapuschkin
S. Wäldchen
Alexander Binder
G. Montavon
Wojciech Samek
K. Müller
61
1,005
0
26 Feb 2019
Fooling Neural Network Interpretations via Adversarial Model Manipulation
Juyeon Heo
Sunghwan Joo
Taesup Moon
AAML
FAtt
68
201
0
06 Feb 2019
Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives
Amit Dhurandhar
Pin-Yu Chen
Ronny Luss
Chun-Chen Tu
Pai-Shun Ting
Karthikeyan Shanmugam
Payel Das
FAtt
89
587
0
21 Feb 2018
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
81
3,922
0
06 Feb 2018
Net2Vec: Quantifying and Explaining how Concepts are Encoded by Filters in Deep Neural Networks
Ruth C. Fong
Andrea Vedaldi
FAtt
44
263
0
10 Jan 2018
NAG: Network for Adversary Generation
Konda Reddy Mopuri
Utkarsh Ojha
Utsav Garg
R. Venkatesh Babu
AAML
53
144
0
09 Dec 2017
Beyond Sparsity: Tree Regularization of Deep Models for Interpretability
Mike Wu
M. C. Hughes
S. Parbhoo
Maurizio Zazzi
Volker Roth
Finale Doshi-Velez
AI4CE
112
281
0
16 Nov 2017
Interpreting Deep Visual Representations via Network Dissection
Bolei Zhou
David Bau
A. Oliva
Antonio Torralba
FAtt
MILM
44
324
0
15 Nov 2017
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
65
2,332
0
01 Nov 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
45
1,514
0
11 Apr 2017
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
110
3,848
0
10 Apr 2017
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
134
2,854
0
14 Mar 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
108
5,920
0
04 Mar 2017
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
108
2,520
0
26 Oct 2016
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
C. Ledig
Lucas Theis
Ferenc Huszár
Jose Caballero
Andrew Cunningham
...
Andrew P. Aitken
Alykhan Tejani
J. Totz
Zehan Wang
Wenzhe Shi
GAN
229
10,646
0
15 Sep 2016
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
110
3,672
0
10 Jun 2016
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSL
SSeg
FAtt
150
9,266
0
14 Dec 2015
The Power of Depth for Feedforward Neural Networks
Ronen Eldan
Ohad Shamir
129
731
0
12 Dec 2015
Object Detectors Emerge in Deep Scene CNNs
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
ObjD
110
1,279
0
22 Dec 2014
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
159
4,653
0
21 Dec 2014
Understanding Deep Image Representations by Inverting Them
Aravindh Mahendran
Andrea Vedaldi
FAtt
84
1,959
0
26 Nov 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
159
14,831
1
21 Dec 2013
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
258
15,825
0
12 Nov 2013
Distributed Representations of Words and Phrases and their Compositionality
Tomas Mikolov
Ilya Sutskever
Kai Chen
G. Corrado
J. Dean
NAI
OCL
275
33,445
0
16 Oct 2013
Invariant Scattering Convolution Networks
Joan Bruna
S. Mallat
68
1,272
0
05 Mar 2012
1