ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.14261
  4. Cited By
A Survey on Neural Network Interpretability

A Survey on Neural Network Interpretability

28 December 2020
Yu Zhang
Peter Tiño
A. Leonardis
K. Tang
    FaML
    XAI
ArXivPDFHTML

Papers citing "A Survey on Neural Network Interpretability"

42 / 42 papers shown
Title
Tuning for Trustworthiness -- Balancing Performance and Explanation Consistency in Neural Network Optimization
Tuning for Trustworthiness -- Balancing Performance and Explanation Consistency in Neural Network Optimization
Alexander Hinterleitner
Thomas Bartz-Beielstein
56
0
0
12 May 2025
Deriving Equivalent Symbol-Based Decision Models from Feedforward Neural Networks
Deriving Equivalent Symbol-Based Decision Models from Feedforward Neural Networks
Sebastian Seidel
Uwe M. Borghoff
53
1
0
16 Apr 2025
Minimum Description Length of a Spectrum Variational Autoencoder: A Theory
Minimum Description Length of a Spectrum Variational Autoencoder: A Theory
Canlin Zhang
Xiuwen Liu
78
0
0
01 Apr 2025
Axiomatic Explainer Globalness via Optimal Transport
Axiomatic Explainer Globalness via Optimal Transport
Davin Hill
Josh Bone
A. Masoomi
Max Torop
Jennifer Dy
138
1
0
13 Mar 2025
Explainable Neural Networks with Guarantees: A Sparse Estimation Approach
Explainable Neural Networks with Guarantees: A Sparse Estimation Approach
Antoine Ledent
Peng Liu
FAtt
205
0
0
20 Feb 2025
Uncertainty-Aware Explanations Through Probabilistic Self-Explainable Neural Networks
Uncertainty-Aware Explanations Through Probabilistic Self-Explainable Neural Networks
Jon Vadillo
Roberto Santana
J. A. Lozano
Marta Z. Kwiatkowska
BDL
AAML
105
0
0
17 Feb 2025
Beyond Label Attention: Transparency in Language Models for Automated Medical Coding via Dictionary Learning
Beyond Label Attention: Transparency in Language Models for Automated Medical Coding via Dictionary Learning
John Wu
David Wu
Jimeng Sun
106
1
0
31 Oct 2024
Reinfier and Reintrainer: Verification and Interpretation-Driven Safe Deep Reinforcement Learning Frameworks
Reinfier and Reintrainer: Verification and Interpretation-Driven Safe Deep Reinforcement Learning Frameworks
Zixuan Yang
Jiaqi Zheng
Guihai Chen
OffRL
55
0
0
19 Oct 2024
DILA: Dictionary Label Attention for Mechanistic Interpretability in High-dimensional Multi-label Medical Coding Prediction
DILA: Dictionary Label Attention for Mechanistic Interpretability in High-dimensional Multi-label Medical Coding Prediction
John Wu
David Wu
Jimeng Sun
272
0
0
16 Sep 2024
Explainable Artificial Intelligence: A Survey of Needs, Techniques, Applications, and Future Direction
Explainable Artificial Intelligence: A Survey of Needs, Techniques, Applications, and Future Direction
Melkamu Mersha
Khang Lam
Joseph Wood
Ali AlShami
Jugal Kalita
XAI
AI4TS
176
31
0
30 Aug 2024
Deep Learning without Global Optimization by Random Fourier Neural Networks
Deep Learning without Global Optimization by Random Fourier Neural Networks
Owen Davis
Gianluca Geraci
Mohammad Motamed
BDL
72
0
0
16 Jul 2024
Retrievable Domain-Sensitive Feature Memory for Multi-Domain Recommendation
Retrievable Domain-Sensitive Feature Memory for Multi-Domain Recommendation
Yuang Zhao
Zhaocheng Du
Qinglin Jia
Linxuan Zhang
Zhenhua Dong
Ruiming Tang
104
3
0
21 May 2024
3VL: Using Trees to Improve Vision-Language Models' Interpretability
3VL: Using Trees to Improve Vision-Language Models' Interpretability
Nir Yellinek
Leonid Karlinsky
Raja Giryes
CoGe
VLM
157
4
0
28 Dec 2023
Explaining Deep Convolutional Neural Networks for Image Classification by Evolving Local Interpretable Model-agnostic Explanations
Explaining Deep Convolutional Neural Networks for Image Classification by Evolving Local Interpretable Model-agnostic Explanations
Bin Wang
Wenbin Pei
Bing Xue
Mengjie Zhang
FAtt
93
3
0
28 Nov 2022
Benchmarking and Survey of Explanation Methods for Black Box Models
Benchmarking and Survey of Explanation Methods for Black Box Models
F. Bodria
F. Giannotti
Riccardo Guidotti
Francesca Naretto
D. Pedreschi
S. Rinzivillo
XAI
60
224
0
25 Feb 2021
Interpretable Machine Learning -- A Brief History, State-of-the-Art and
  Challenges
Interpretable Machine Learning -- A Brief History, State-of-the-Art and Challenges
Christoph Molnar
Giuseppe Casalicchio
B. Bischl
AI4TS
AI4CE
61
400
0
19 Oct 2020
Explanations can be manipulated and geometry is to blame
Explanations can be manipulated and geometry is to blame
Ann-Kathrin Dombrowski
Maximilian Alber
Christopher J. Anders
M. Ackermann
K. Müller
Pan Kessel
AAML
FAtt
49
329
0
19 Jun 2019
Unmasking Clever Hans Predictors and Assessing What Machines Really
  Learn
Unmasking Clever Hans Predictors and Assessing What Machines Really Learn
Sebastian Lapuschkin
S. Wäldchen
Alexander Binder
G. Montavon
Wojciech Samek
K. Müller
61
1,005
0
26 Feb 2019
Fooling Neural Network Interpretations via Adversarial Model
  Manipulation
Fooling Neural Network Interpretations via Adversarial Model Manipulation
Juyeon Heo
Sunghwan Joo
Taesup Moon
AAML
FAtt
68
201
0
06 Feb 2019
Explanations based on the Missing: Towards Contrastive Explanations with
  Pertinent Negatives
Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives
Amit Dhurandhar
Pin-Yu Chen
Ronny Luss
Chun-Chen Tu
Pai-Shun Ting
Karthikeyan Shanmugam
Payel Das
FAtt
89
587
0
21 Feb 2018
A Survey Of Methods For Explaining Black Box Models
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
81
3,922
0
06 Feb 2018
Net2Vec: Quantifying and Explaining how Concepts are Encoded by Filters
  in Deep Neural Networks
Net2Vec: Quantifying and Explaining how Concepts are Encoded by Filters in Deep Neural Networks
Ruth C. Fong
Andrea Vedaldi
FAtt
44
263
0
10 Jan 2018
NAG: Network for Adversary Generation
NAG: Network for Adversary Generation
Konda Reddy Mopuri
Utkarsh Ojha
Utsav Garg
R. Venkatesh Babu
AAML
53
144
0
09 Dec 2017
Beyond Sparsity: Tree Regularization of Deep Models for Interpretability
Beyond Sparsity: Tree Regularization of Deep Models for Interpretability
Mike Wu
M. C. Hughes
S. Parbhoo
Maurizio Zazzi
Volker Roth
Finale Doshi-Velez
AI4CE
112
281
0
16 Nov 2017
Interpreting Deep Visual Representations via Network Dissection
Interpreting Deep Visual Representations via Network Dissection
Bolei Zhou
David Bau
A. Oliva
Antonio Torralba
FAtt
MILM
44
324
0
15 Nov 2017
Counterfactual Explanations without Opening the Black Box: Automated
  Decisions and the GDPR
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
65
2,332
0
01 Nov 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
45
1,514
0
11 Apr 2017
Learning Important Features Through Propagating Activation Differences
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
110
3,848
0
10 Apr 2017
Understanding Black-box Predictions via Influence Functions
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
134
2,854
0
14 Mar 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
108
5,920
0
04 Mar 2017
Universal adversarial perturbations
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
108
2,520
0
26 Oct 2016
Photo-Realistic Single Image Super-Resolution Using a Generative
  Adversarial Network
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
C. Ledig
Lucas Theis
Ferenc Huszár
Jose Caballero
Andrew Cunningham
...
Andrew P. Aitken
Alykhan Tejani
J. Totz
Zehan Wang
Wenzhe Shi
GAN
229
10,646
0
15 Sep 2016
The Mythos of Model Interpretability
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
110
3,672
0
10 Jun 2016
Learning Deep Features for Discriminative Localization
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSL
SSeg
FAtt
150
9,266
0
14 Dec 2015
The Power of Depth for Feedforward Neural Networks
The Power of Depth for Feedforward Neural Networks
Ronen Eldan
Ohad Shamir
129
731
0
12 Dec 2015
Object Detectors Emerge in Deep Scene CNNs
Object Detectors Emerge in Deep Scene CNNs
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
ObjD
110
1,279
0
22 Dec 2014
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
159
4,653
0
21 Dec 2014
Understanding Deep Image Representations by Inverting Them
Understanding Deep Image Representations by Inverting Them
Aravindh Mahendran
Andrea Vedaldi
FAtt
84
1,959
0
26 Nov 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
159
14,831
1
21 Dec 2013
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
258
15,825
0
12 Nov 2013
Distributed Representations of Words and Phrases and their
  Compositionality
Distributed Representations of Words and Phrases and their Compositionality
Tomas Mikolov
Ilya Sutskever
Kai Chen
G. Corrado
J. Dean
NAI
OCL
275
33,445
0
16 Oct 2013
Invariant Scattering Convolution Networks
Invariant Scattering Convolution Networks
Joan Bruna
S. Mallat
68
1,272
0
05 Mar 2012
1