ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.13760
  4. Cited By
Variance Reduction on General Adaptive Stochastic Mirror Descent

Variance Reduction on General Adaptive Stochastic Mirror Descent

26 December 2020
Wenjie Li
Zhanyu Wang
Yichen Zhang
Guang Cheng
ArXivPDFHTML

Papers citing "Variance Reduction on General Adaptive Stochastic Mirror Descent"

28 / 28 papers shown
Title
SVRG Meets AdaGrad: Painless Variance Reduction
SVRG Meets AdaGrad: Painless Variance Reduction
Benjamin Dubois-Taine
Sharan Vaswani
Reza Babanezhad
Mark Schmidt
Simon Lacoste-Julien
29
18
0
18 Feb 2021
Adam$^+$: A Stochastic Method with Adaptive Variance Reduction
Adam+^++: A Stochastic Method with Adaptive Variance Reduction
Mingrui Liu
Wei Zhang
Francesco Orabona
Tianbao Yang
34
28
0
24 Nov 2020
AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed
  Gradients
AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients
Juntang Zhuang
Tommy M. Tang
Yifan Ding
S. Tatikonda
Nicha Dvornek
X. Papademetris
James S. Duncan
ODL
83
505
0
15 Oct 2020
PAGE: A Simple and Optimal Probabilistic Gradient Estimator for
  Nonconvex Optimization
PAGE: A Simple and Optimal Probabilistic Gradient Estimator for Nonconvex Optimization
Zhize Li
Hongyan Bao
Xiangliang Zhang
Peter Richtárik
ODL
49
128
0
25 Aug 2020
AdaX: Adaptive Gradient Descent with Exponential Long Term Memory
AdaX: Adaptive Gradient Descent with Exponential Long Term Memory
Wenjie Li
Zhaoyang Zhang
Xinjiang Wang
Ping Luo
ODL
35
28
0
21 Apr 2020
On the Variance of the Adaptive Learning Rate and Beyond
On the Variance of the Adaptive Learning Rate and Beyond
Liyuan Liu
Haoming Jiang
Pengcheng He
Weizhu Chen
Xiaodong Liu
Jianfeng Gao
Jiawei Han
ODL
152
1,894
0
08 Aug 2019
A Hybrid Stochastic Optimization Framework for Stochastic Composite
  Nonconvex Optimization
A Hybrid Stochastic Optimization Framework for Stochastic Composite Nonconvex Optimization
Quoc Tran-Dinh
Nhan H. Pham
T. Dzung
Lam M. Nguyen
38
50
0
08 Jul 2019
Stabilized SVRG: Simple Variance Reduction for Nonconvex Optimization
Stabilized SVRG: Simple Variance Reduction for Nonconvex Optimization
Rong Ge
Zhize Li
Weiyao Wang
Xiang Wang
36
34
0
01 May 2019
On the Convergence of Adam and Beyond
On the Convergence of Adam and Beyond
Sashank J. Reddi
Satyen Kale
Surinder Kumar
52
2,482
0
19 Apr 2019
On the Adaptivity of Stochastic Gradient-Based Optimization
On the Adaptivity of Stochastic Gradient-Based Optimization
Lihua Lei
Michael I. Jordan
ODL
50
22
0
09 Apr 2019
Adaptive Gradient Methods with Dynamic Bound of Learning Rate
Adaptive Gradient Methods with Dynamic Bound of Learning Rate
Liangchen Luo
Yuanhao Xiong
Yan Liu
Xu Sun
ODL
46
600
0
26 Feb 2019
ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite
  Nonconvex Optimization
ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization
Nhan H. Pham
Lam M. Nguyen
Dzung Phan
Quoc Tran-Dinh
33
140
0
15 Feb 2019
On the Convergence of Adaptive Gradient Methods for Nonconvex
  Optimization
On the Convergence of Adaptive Gradient Methods for Nonconvex Optimization
Dongruo Zhou
Yiqi Tang
Yuan Cao
Ziyan Yang
Quanquan Gu
40
150
0
16 Aug 2018
On the Convergence of A Class of Adam-Type Algorithms for Non-Convex
  Optimization
On the Convergence of A Class of Adam-Type Algorithms for Non-Convex Optimization
Xiangyi Chen
Sijia Liu
Ruoyu Sun
Mingyi Hong
46
322
0
08 Aug 2018
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path
  Integrated Differential Estimator
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator
Cong Fang
C. J. Li
Zhouchen Lin
Tong Zhang
81
572
0
04 Jul 2018
Stochastic Nested Variance Reduction for Nonconvex Optimization
Stochastic Nested Variance Reduction for Nonconvex Optimization
Dongruo Zhou
Pan Xu
Quanquan Gu
49
147
0
20 Jun 2018
Nostalgic Adam: Weighting more of the past gradients when designing the
  adaptive learning rate
Nostalgic Adam: Weighting more of the past gradients when designing the adaptive learning rate
Haiwen Huang
Changzhang Wang
Bin Dong
ODL
22
59
0
19 May 2018
A Simple Proximal Stochastic Gradient Method for Nonsmooth Nonconvex
  Optimization
A Simple Proximal Stochastic Gradient Method for Nonsmooth Nonconvex Optimization
Zhize Li
Jian Li
56
116
0
13 Feb 2018
Natasha 2: Faster Non-Convex Optimization Than SGD
Natasha 2: Faster Non-Convex Optimization Than SGD
Zeyuan Allen-Zhu
ODL
64
245
0
29 Aug 2017
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
Priya Goyal
Piotr Dollár
Ross B. Girshick
P. Noordhuis
Lukasz Wesolowski
Aapo Kyrola
Andrew Tulloch
Yangqing Jia
Kaiming He
3DH
91
3,666
0
08 Jun 2017
The Marginal Value of Adaptive Gradient Methods in Machine Learning
The Marginal Value of Adaptive Gradient Methods in Machine Learning
Ashia Wilson
Rebecca Roelofs
Mitchell Stern
Nathan Srebro
Benjamin Recht
ODL
48
1,023
0
23 May 2017
Natasha: Faster Non-Convex Stochastic Optimization Via Strongly
  Non-Convex Parameter
Natasha: Faster Non-Convex Stochastic Optimization Via Strongly Non-Convex Parameter
Zeyuan Allen-Zhu
57
80
0
02 Feb 2017
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark Schmidt
221
1,208
0
16 Aug 2016
SGDR: Stochastic Gradient Descent with Warm Restarts
SGDR: Stochastic Gradient Descent with Warm Restarts
I. Loshchilov
Frank Hutter
ODL
229
8,030
0
13 Aug 2016
Stochastic Variance Reduction for Nonconvex Optimization
Stochastic Variance Reduction for Nonconvex Optimization
Sashank J. Reddi
Ahmed S. Hefny
S. Sra
Barnabás Póczós
Alex Smola
80
598
0
19 Mar 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.4K
192,638
0
10 Dec 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
808
149,474
0
22 Dec 2014
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly
  Convex Composite Objectives
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
105
1,817
0
01 Jul 2014
1