Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.12896
Cited By
How Does a Neural Network's Architecture Impact Its Robustness to Noisy Labels?
23 December 2020
Jingling Li
Mozhi Zhang
Keyulu Xu
John P. Dickerson
Jimmy Ba
OOD
NoLa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How Does a Neural Network's Architecture Impact Its Robustness to Noisy Labels?"
7 / 7 papers shown
Title
Strong inductive biases provably prevent harmless interpolation
Michael Aerni
Marco Milanta
Konstantin Donhauser
Fanny Yang
35
9
0
18 Jan 2023
Leveraging Unlabeled Data to Track Memorization
Mahsa Forouzesh
Hanie Sedghi
Patrick Thiran
NoLa
TDI
34
4
0
08 Dec 2022
Graph Neural Networks are Dynamic Programmers
Andrew Dudzik
Petar Velickovic
34
63
0
29 Mar 2022
Detecting Corrupted Labels Without Training a Model to Predict
Zhaowei Zhu
Zihao Dong
Yang Liu
NoLa
149
62
0
12 Oct 2021
Curriculum Loss: Robust Learning and Generalization against Label Corruption
Yueming Lyu
Ivor W. Tsang
NoLa
61
172
0
24 May 2019
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
270
1,944
0
09 Jun 2018
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
1