ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.12258
  4. Cited By
Underwater image filtering: methods, datasets and evaluation

Underwater image filtering: methods, datasets and evaluation

22 December 2020
C. Li
Riccardo Mazzon
Andrea Cavallaro
ArXivPDFHTML

Papers citing "Underwater image filtering: methods, datasets and evaluation"

20 / 20 papers shown
Title
Diving Deeper into Underwater Image Enhancement: A Survey
Diving Deeper into Underwater Image Enhancement: A Survey
Saeed Anwar
Chongyi Li
44
193
0
17 Jul 2019
An Experimental-based Review of Image Enhancement and Image Restoration
  Methods for Underwater Imaging
An Experimental-based Review of Image Enhancement and Image Restoration Methods for Underwater Imaging
Yan Wang
Wei Song
Giancarlo Fortino
Lizhe Qi
Wenqiang Zhang
A. Liotta
54
190
0
07 Jul 2019
All-In-One Underwater Image Enhancement using Domain-Adversarial
  Learning
All-In-One Underwater Image Enhancement using Domain-Adversarial Learning
Pritish Uplavikar
Zhenyu Wu
Zhangyang Wang
48
129
0
30 May 2019
Underwater Color Restoration Using U-Net Denoising Autoencoder
Underwater Color Restoration Using U-Net Denoising Autoencoder
Yousif Hashisho
Mohamad Albadawi
T. Krause
U. V. Lukas
36
33
0
22 May 2019
Fast Underwater Image Enhancement for Improved Visual Perception
Fast Underwater Image Enhancement for Improved Visual Perception
M. Islam
Youya Xia
Junaed Sattar
GAN
46
895
0
23 Mar 2019
Real-world Underwater Enhancement: Challenges, Benchmarks, and Solutions
Real-world Underwater Enhancement: Challenges, Benchmarks, and Solutions
Risheng Liu
Xin-Yue Fan
Ming Zhu
Minjun Hou
Zhongxuan Luo
57
505
0
15 Jan 2019
An Underwater Image Enhancement Benchmark Dataset and Beyond
An Underwater Image Enhancement Benchmark Dataset and Beyond
Chongyi Li
Chunle Guo
Wenqi Ren
Runmin Cong
Junhui Hou
Sam Kwong
Dacheng Tao
3DV
72
1,278
0
11 Jan 2019
Underwater Single Image Color Restoration Using Haze-Lines and a New
  Quantitative Dataset
Underwater Single Image Color Restoration Using Haze-Lines and a New Quantitative Dataset
Dana Berman
Deborah Levy
S. Avidan
T. Treibitz
67
466
0
04 Nov 2018
Enhancing Underwater Imagery using Generative Adversarial Networks
Enhancing Underwater Imagery using Generative Adversarial Networks
C. Fabbri
M. Islam
Junaed Sattar
GAN
53
571
0
11 Jan 2018
Emerging from Water: Underwater Image Color Correction Based on Weakly
  Supervised Color Transfer
Emerging from Water: Underwater Image Color Correction Based on Weakly Supervised Color Transfer
Chongyi Li
Jichang Guo
Chunle Guo
GAN
54
437
0
19 Oct 2017
Deep Visual Attention Prediction
Deep Visual Attention Prediction
Wenguan Wang
Jianbing Shen
MDE
55
586
0
07 May 2017
WaterGAN: Unsupervised Generative Network to Enable Real-time Color
  Correction of Monocular Underwater Images
WaterGAN: Unsupervised Generative Network to Enable Real-time Color Correction of Monocular Underwater Images
Jie Li
Katherine A. Skinner
Ryan Eustice
Matthew Johnson-Roberson
GAN
52
677
0
23 Feb 2017
Underwater Optical Image Processing: A Comprehensive Review
Underwater Optical Image Processing: A Comprehensive Review
Huimin Lu
Yujie Li
Yudong Zhang
Min Chen
S. Serikawa
Hyoungseop Kim
32
188
0
13 Feb 2017
Image-to-Image Translation with Conditional Adversarial Networks
Image-to-Image Translation with Conditional Adversarial Networks
Phillip Isola
Jun-Yan Zhu
Tinghui Zhou
Alexei A. Efros
SSeg
308
19,612
0
21 Nov 2016
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
Justin Johnson
Alexandre Alahi
Li Fei-Fei
SupR
212
10,230
0
27 Mar 2016
Deep multi-scale video prediction beyond mean square error
Deep multi-scale video prediction beyond mean square error
Michaël Mathieu
Camille Couprie
Yann LeCun
GAN
122
1,882
0
17 Nov 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
1.6K
76,917
0
18 May 2015
A Deeper Look at Dataset Bias
A Deeper Look at Dataset Bias
Tatiana Tommasi
Novi Patricia
Barbara Caputo
Tinne Tuytelaars
97
327
0
06 May 2015
EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical
  Flow
EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow
Jérôme Revaud
Philippe Weinzaepfel
Zaïd Harchaoui
Cordelia Schmid
69
796
0
12 Jan 2015
Deep Convolutional Neural Fields for Depth Estimation from a Single
  Image
Deep Convolutional Neural Fields for Depth Estimation from a Single Image
Fayao Liu
Chunhua Shen
Guosheng Lin
MDE
160
890
0
24 Nov 2014
1