ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.12007
31
21
v1v2 (latest)

Uncertainty and Surprisal Jointly Deliver the Punchline: Exploiting Incongruity-Based Features for Humor Recognition

22 December 2020
Yubo Xie
Junze Li
P. Pu
    UQLM
ArXiv (abs)PDFHTML
Abstract

Humor recognition has been widely studied as a text classification problem using data-driven approaches. However, most existing work does not examine the actual joke mechanism to understand humor. We break down any joke into two distinct components: the set-up and the punchline, and further explore the special relationship between them. Inspired by the incongruity theory of humor, we model the set-up as the part developing semantic uncertainty, and the punchline disrupting audience expectations. With increasingly powerful language models, we were able to feed the set-up along with the punchline into the GPT-2 language model, and calculate the uncertainty and surprisal values of the jokes. By conducting experiments on the SemEval 2021 Task 7 dataset, we found that these two features have better capabilities of telling jokes from non-jokes, compared with existing baselines.

View on arXiv
Comments on this paper