ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.11002
  4. Cited By
Deep Bingham Networks: Dealing with Uncertainty and Ambiguity in Pose
  Estimation

Deep Bingham Networks: Dealing with Uncertainty and Ambiguity in Pose Estimation

20 December 2020
Haowen Deng
Mai Bui
Nassir Navab
Leonidas J. Guibas
Slobodan Ilic
Tolga Birdal
    3DH
ArXivPDFHTML

Papers citing "Deep Bingham Networks: Dealing with Uncertainty and Ambiguity in Pose Estimation"

15 / 15 papers shown
Title
Towards Robust Probabilistic Modeling on SO(3) via Rotation Laplace Distribution
Towards Robust Probabilistic Modeling on SO(3) via Rotation Laplace Distribution
Yingda Yin
Jiangran Lyu
Yang Wang
Heru Wang
H. Wang
B. Chen
OOD
94
4
0
24 Feb 2025
Alignist: CAD-Informed Orientation Distribution Estimation by Fusing
  Shape and Correspondences
Alignist: CAD-Informed Orientation Distribution Estimation by Fusing Shape and Correspondences
Shishir Reddy Vutukur
R. Haugaard
Junwen Huang
Benjamin Busam
Tolga Birdal
33
0
0
10 Sep 2024
HR-APR: APR-agnostic Framework with Uncertainty Estimation and
  Hierarchical Refinement for Camera Relocalisation
HR-APR: APR-agnostic Framework with Uncertainty Estimation and Hierarchical Refinement for Camera Relocalisation
Changkun Liu
Shuai Chen
Yukun Zhao
Huajian Huang
V. Prisacariu
Tristan Braud
37
9
0
22 Feb 2024
Kernel Stein Discrepancy on Lie Groups: Theory and Applications
Kernel Stein Discrepancy on Lie Groups: Theory and Applications
Xiaoda Qu
Xiran Fan
B. Vemuri
32
0
0
21 May 2023
Image to Sphere: Learning Equivariant Features for Efficient Pose
  Prediction
Image to Sphere: Learning Equivariant Features for Efficient Pose Prediction
David M. Klee
Ondrej Biza
Robert W. Platt
Robin G. Walters
21
18
0
27 Feb 2023
AQuaMaM: An Autoregressive, Quaternion Manifold Model for Rapidly
  Estimating Complex SO(3) Distributions
AQuaMaM: An Autoregressive, Quaternion Manifold Model for Rapidly Estimating Complex SO(3) Distributions
Michael A. Alcorn
27
0
0
21 Jan 2023
Towards Explainability in Modular Autonomous Vehicle Software
Towards Explainability in Modular Autonomous Vehicle Software
Hongrui Zheng
Zirui Zang
Shuo Yang
Rahul Mangharam
25
0
0
01 Dec 2022
Learning Implicit Probability Distribution Functions for Symmetric
  Orientation Estimation from RGB Images Without Pose Labels
Learning Implicit Probability Distribution Functions for Symmetric Orientation Estimation from RGB Images Without Pose Labels
Arul Selvam Periyasamy
Luis Denninger
Sven Behnke
13
1
0
21 Nov 2022
Self-Aligning Depth-regularized Radiance Fields for Asynchronous RGB-D
  Sequences
Self-Aligning Depth-regularized Radiance Fields for Asynchronous RGB-D Sequences
Yuxin Huang
Yongliang Shi
Zirui Wu
Yuantao Chen
Runyi Yang
Z. Zhu
Chao Hou
Hao Zhao
Guyue Zhou
3DH
28
0
0
14 Nov 2022
Local_INN: Implicit Map Representation and Localization with Invertible
  Neural Networks
Local_INN: Implicit Map Representation and Localization with Invertible Neural Networks
Zirui Zang
Hongrui Zheng
Johannes Betz
Rahul Mangharam
26
6
0
24 Sep 2022
6D Camera Relocalization in Visually Ambiguous Extreme Environments
6D Camera Relocalization in Visually Ambiguous Extreme Environments
Yang Zheng
Tolga Birdal
Fei Xia
Yanchao Yang
Yueqi Duan
Leonidas J. Guibas
13
2
0
13 Jul 2022
Probabilistic Rotation Representation With an Efficiently Computable
  Bingham Loss Function and Its Application to Pose Estimation
Probabilistic Rotation Representation With an Efficiently Computable Bingham Loss Function and Its Application to Pose Estimation
Hiroya Sato
Takuya Ikeda
Koichi Nishiwaki
33
1
0
09 Mar 2022
Projective Manifold Gradient Layer for Deep Rotation Regression
Projective Manifold Gradient Layer for Deep Rotation Regression
Jiayi Chen
Yingda Yin
Tolga Birdal
Baoquan Chen
Leonidas J. Guibas
He-Nan Wang
44
33
0
22 Oct 2021
Implicit-PDF: Non-Parametric Representation of Probability Distributions
  on the Rotation Manifold
Implicit-PDF: Non-Parametric Representation of Probability Distributions on the Rotation Manifold
Kieran A. Murphy
Carlos Esteves
Varun Jampani
Srikumar Ramalingam
A. Makadia
18
76
0
10 Jun 2021
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1