ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.09712
  4. Cited By
Deep Molecular Dreaming: Inverse machine learning for de-novo molecular
  design and interpretability with surjective representations

Deep Molecular Dreaming: Inverse machine learning for de-novo molecular design and interpretability with surjective representations

17 December 2020
Cynthia X Shen
Mario Krenn
S. Eppel
Alán Aspuru-Guzik
ArXivPDFHTML

Papers citing "Deep Molecular Dreaming: Inverse machine learning for de-novo molecular design and interpretability with surjective representations"

10 / 10 papers shown
Title
Scientific intuition inspired by machine learning generated hypotheses
Scientific intuition inspired by machine learning generated hypotheses
Pascal Friederich
Mario Krenn
Isaac Tamblyn
Alán Aspuru-Guzik
AI4CE
54
34
0
27 Oct 2020
Augmenting Genetic Algorithms with Deep Neural Networks for Exploring
  the Chemical Space
Augmenting Genetic Algorithms with Deep Neural Networks for Exploring the Chemical Space
AkshatKumar Nigam
Pascal Friederich
Mario Krenn
Alán Aspuru-Guzik
AI4CE
41
131
0
25 Sep 2019
Explainable Machine Learning for Scientific Insights and Discoveries
Explainable Machine Learning for Scientific Insights and Discoveries
R. Roscher
B. Bohn
Marco F. Duarte
Jochen Garcke
XAI
61
667
0
21 May 2019
Constrained Generation of Semantically Valid Graphs via Regularizing
  Variational Autoencoders
Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders
Tengfei Ma
Jie Chen
Cao Xiao
113
209
0
07 Sep 2018
Discovering physical concepts with neural networks
Discovering physical concepts with neural networks
Raban Iten
Tony Metger
H. Wilming
L. D. Rio
R. Renner
PINN
AI4CE
51
388
0
26 Jul 2018
Graph Convolutional Policy Network for Goal-Directed Molecular Graph
  Generation
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
J. Leskovec
GNN
274
902
0
07 Jun 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
317
1,367
0
12 Feb 2018
Objective-Reinforced Generative Adversarial Networks (ORGAN) for
  Sequence Generation Models
Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models
G. L. Guimaraes
Benjamín Sánchez-Lengeling
Carlos Outeiral
Pedro Luis Cunha Farias
Alán Aspuru-Guzik
GAN
75
525
0
30 May 2017
Automatic chemical design using a data-driven continuous representation
  of molecules
Automatic chemical design using a data-driven continuous representation of molecules
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
147
2,921
0
07 Oct 2016
Understanding Deep Image Representations by Inverting Them
Understanding Deep Image Representations by Inverting Them
Aravindh Mahendran
Andrea Vedaldi
FAtt
105
1,963
0
26 Nov 2014
1