Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.09384
Cited By
On the Limitations of Denoising Strategies as Adversarial Defenses
17 December 2020
Zhonghan Niu
Zhaoxi Chen
Linyi Li
Yubin Yang
Bo-wen Li
Jinfeng Yi
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Limitations of Denoising Strategies as Adversarial Defenses"
5 / 5 papers shown
Title
A Random Ensemble of Encrypted Vision Transformers for Adversarially Robust Defense
Ryota Iijima
Sayaka Shiota
Hitoshi Kiya
36
6
0
11 Feb 2024
Adversarial Examples Might be Avoidable: The Role of Data Concentration in Adversarial Robustness
Ambar Pal
Huaijin Hao
Rene Vidal
26
8
0
28 Sep 2023
Towards Robust Neural Networks via Orthogonal Diversity
Kun Fang
Qinghua Tao
Yingwen Wu
Tao Li
Jia Cai
Feipeng Cai
Xiaolin Huang
Jie-jin Yang
AAML
41
8
0
23 Oct 2020
ComDefend: An Efficient Image Compression Model to Defend Adversarial Examples
Xiaojun Jia
Xingxing Wei
Xiaochun Cao
H. Foroosh
AAML
69
264
0
30 Nov 2018
Shield: Fast, Practical Defense and Vaccination for Deep Learning using JPEG Compression
Nilaksh Das
Madhuri Shanbhogue
Shang-Tse Chen
Fred Hohman
Siwei Li
Li-Wei Chen
Michael E. Kounavis
Duen Horng Chau
FedML
AAML
43
224
0
19 Feb 2018
1