ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.08892
  4. Cited By
E$ \mathbf{^3} $MoP: Efficient Motion Planning Based on Heuristic-Guided
  Motion Primitives Pruning and Path Optimization With Sparse-Banded Structure
v1v2v3 (latest)

E3 \mathbf{^3} 3MoP: Efficient Motion Planning Based on Heuristic-Guided Motion Primitives Pruning and Path Optimization With Sparse-Banded Structure

16 December 2020
J. Wen
Xuebo Zhang
Haiming Gao
Jing Yuan
Yongchun Fang
ArXiv (abs)PDFHTML

Papers citing "E$ \mathbf{^3} $MoP: Efficient Motion Planning Based on Heuristic-Guided Motion Primitives Pruning and Path Optimization With Sparse-Banded Structure"

3 / 3 papers shown
Title
Terrain-Aware Kinodynamic Planning with Efficiently Adaptive State Lattices for Mobile Robot Navigation in Off-Road Environments
Terrain-Aware Kinodynamic Planning with Efficiently Adaptive State Lattices for Mobile Robot Navigation in Off-Road Environments
Eric R. Damm
Jason M. Gregory
Eli S. Lancaster
Felix Sanchez
Daniel M. Sahu
Thomas M. Howard
32
5
0
24 Apr 2025
Universal Trajectory Optimization Framework for Differential Drive Robot Class
Universal Trajectory Optimization Framework for Differential Drive Robot Class
Mengke Zhang
Nanhe Chen
Hu Wang
Jianxiong Qiu
Zhichao Han
Qiuyu Ren
Chao Xu
Fei Gao
Yanjun Cao
66
2
0
12 Sep 2024
Sampling-based Algorithms for Optimal Motion Planning
Sampling-based Algorithms for Optimal Motion Planning
S. Karaman
Emilio Frazzoli
105
4,698
0
05 May 2011
1