ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.08668
  4. Cited By
Mitigating Bias in Calibration Error Estimation

Mitigating Bias in Calibration Error Estimation

15 December 2020
Rebecca Roelofs
Nicholas Cain
Jonathon Shlens
Michael C. Mozer
ArXivPDFHTML

Papers citing "Mitigating Bias in Calibration Error Estimation"

28 / 28 papers shown
Title
Comparing Uncertainty Measurement and Mitigation Methods for Large Language Models: A Systematic Review
Comparing Uncertainty Measurement and Mitigation Methods for Large Language Models: A Systematic Review
Toghrul Abbasli
Kentaroh Toyoda
Yuan Wang
Leon Witt
Muhammad Asif Ali
Yukai Miao
Dan Li
Qingsong Wei
UQCV
92
0
0
25 Apr 2025
MBCT: Tree-Based Feature-Aware Binning for Individual Uncertainty Calibration
MBCT: Tree-Based Feature-Aware Binning for Individual Uncertainty Calibration
Siguang Huang
Yunli Wang
Lili Mou
Huayue Zhang
Han Zhu
Chuan Yu
Bo Zheng
60
15
0
13 Mar 2025
Optimizing Estimators of Squared Calibration Errors in Classification
Optimizing Estimators of Squared Calibration Errors in Classification
Sebastian G. Gruber
Francis Bach
74
1
0
24 Feb 2025
Understanding the Capabilities and Limitations of Weak-to-Strong Generalization
Understanding the Capabilities and Limitations of Weak-to-Strong Generalization
Wei Yao
Wenkai Yang
ziqi wang
Yankai Lin
Yong Liu
ELM
105
1
0
03 Feb 2025
Rethinking Early Stopping: Refine, Then Calibrate
Rethinking Early Stopping: Refine, Then Calibrate
Eugene Berta
David Holzmüller
Michael I. Jordan
Francis Bach
67
0
0
31 Jan 2025
Combining Priors with Experience: Confidence Calibration Based on Binomial Process Modeling
Combining Priors with Experience: Confidence Calibration Based on Binomial Process Modeling
Jinzong Dong
Zhaohui Jiang
Dong Pan
Haoyang Yu
56
0
0
14 Dec 2024
Calibrating Expressions of Certainty
Calibrating Expressions of Certainty
Peiqi Wang
Barbara D. Lam
Yingcheng Liu
Ameneh Asgari-Targhi
Rameswar Panda
W. Wells
Tina Kapur
Polina Golland
32
1
0
06 Oct 2024
LLMs Are Biased Towards Output Formats! Systematically Evaluating and Mitigating Output Format Bias of LLMs
LLMs Are Biased Towards Output Formats! Systematically Evaluating and Mitigating Output Format Bias of LLMs
Do Xuan Long
Hai Nguyen Ngoc
Tiviatis Sim
Hieu Dao
Shafiq R. Joty
Kenji Kawaguchi
Nancy F. Chen
Min-Yen Kan
34
7
0
16 Aug 2024
Reassessing How to Compare and Improve the Calibration of Machine Learning Models
Reassessing How to Compare and Improve the Calibration of Machine Learning Models
M. Chidambaram
Rong Ge
68
1
0
06 Jun 2024
Model Calibration in Dense Classification with Adaptive Label
  Perturbation
Model Calibration in Dense Classification with Adaptive Label Perturbation
Jiawei Liu
Changkun Ye
Shanpeng Wang
Rui-Qing Cui
Jing Zhang
Kai Zhang
Nick Barnes
47
5
0
25 Jul 2023
Set Learning for Accurate and Calibrated Models
Set Learning for Accurate and Calibrated Models
Lukas Muttenthaler
Robert A. Vandermeulen
Qiuyi Zhang
Thomas Unterthiner
Klaus-Robert Muller
31
2
0
05 Jul 2023
Dual Focal Loss for Calibration
Dual Focal Loss for Calibration
Linwei Tao
Minjing Dong
Chang Xu
UQCV
39
26
0
23 May 2023
Minimum-Risk Recalibration of Classifiers
Minimum-Risk Recalibration of Classifiers
Zeyu Sun
Dogyoon Song
Alfred Hero
30
5
0
18 May 2023
Calibration Error Estimation Using Fuzzy Binning
Calibration Error Estimation Using Fuzzy Binning
Geetanjali Bihani
Julia Taylor Rayz
95
2
0
30 Apr 2023
Calibrating a Deep Neural Network with Its Predecessors
Calibrating a Deep Neural Network with Its Predecessors
Linwei Tao
Minjing Dong
Daochang Liu
Changming Sun
Chang Xu
BDL
UQCV
12
5
0
13 Feb 2023
Evaluating Probabilistic Classifiers: The Triptych
Evaluating Probabilistic Classifiers: The Triptych
Timo Dimitriadis
T. Gneiting
Alexander I. Jordan
Peter Vogel
UQCV
23
10
0
25 Jan 2023
Annealing Double-Head: An Architecture for Online Calibration of Deep
  Neural Networks
Annealing Double-Head: An Architecture for Online Calibration of Deep Neural Networks
Erdong Guo
D. Draper
Maria de Iorio
35
0
0
27 Dec 2022
A Unifying Theory of Distance from Calibration
A Unifying Theory of Distance from Calibration
Jarosław Błasiok
Parikshit Gopalan
Lunjia Hu
Preetum Nakkiran
31
32
0
30 Nov 2022
AdaFocal: Calibration-aware Adaptive Focal Loss
AdaFocal: Calibration-aware Adaptive Focal Loss
Arindam Ghosh
Thomas Schaaf
Matthew R. Gormley
FedML
UQCV
21
25
0
21 Nov 2022
Calibrated Selective Classification
Calibrated Selective Classification
Adam Fisch
Tommi Jaakkola
Regina Barzilay
26
16
0
25 Aug 2022
Sample-dependent Adaptive Temperature Scaling for Improved Calibration
Sample-dependent Adaptive Temperature Scaling for Improved Calibration
Thomas Joy
Francesco Pinto
Ser-Nam Lim
Philip H. S. Torr
P. Dokania
UQCV
27
30
0
13 Jul 2022
On the Usefulness of the Fit-on-the-Test View on Evaluating Calibration of Classifiers
On the Usefulness of the Fit-on-the-Test View on Evaluating Calibration of Classifiers
Markus Kängsepp
Kaspar Valk
Meelis Kull
27
3
0
16 Mar 2022
Model soups: averaging weights of multiple fine-tuned models improves
  accuracy without increasing inference time
Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
Mitchell Wortsman
Gabriel Ilharco
S. Gadre
Rebecca Roelofs
Raphael Gontijo-Lopes
...
Hongseok Namkoong
Ali Farhadi
Y. Carmon
Simon Kornblith
Ludwig Schmidt
MoMe
54
914
1
10 Mar 2022
T-Cal: An optimal test for the calibration of predictive models
T-Cal: An optimal test for the calibration of predictive models
Donghwan Lee
Xinmeng Huang
Hamed Hassani
Edgar Dobriban
22
20
0
03 Mar 2022
No One Representation to Rule Them All: Overlapping Features of Training
  Methods
No One Representation to Rule Them All: Overlapping Features of Training Methods
Raphael Gontijo-Lopes
Yann N. Dauphin
E. D. Cubuk
20
60
0
20 Oct 2021
Distribution-free calibration guarantees for histogram binning without
  sample splitting
Distribution-free calibration guarantees for histogram binning without sample splitting
Chirag Gupta
Aaditya Ramdas
19
37
0
10 May 2021
von Mises-Fisher Loss: An Exploration of Embedding Geometries for
  Supervised Learning
von Mises-Fisher Loss: An Exploration of Embedding Geometries for Supervised Learning
Tyler R. Scott
Andrew C. Gallagher
Michael C. Mozer
25
38
0
29 Mar 2021
Improving model calibration with accuracy versus uncertainty
  optimization
Improving model calibration with accuracy versus uncertainty optimization
R. Krishnan
Omesh Tickoo
UQCV
188
157
0
14 Dec 2020
1