ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.08625
  4. Cited By
Learning Prediction Intervals for Model Performance

Learning Prediction Intervals for Model Performance

15 December 2020
Benjamin Elder
Matthew Arnold
Anupama Murthi
Jirí Navrátil
ArXivPDFHTML

Papers citing "Learning Prediction Intervals for Model Performance"

9 / 9 papers shown
Title
Detecting Domain Shift in Multiple Instance Learning for Digital
  Pathology Using Fréchet Domain Distance
Detecting Domain Shift in Multiple Instance Learning for Digital Pathology Using Fréchet Domain Distance
Milda Pocevičiūtė
Gabriel Eilertsen
Stina Garvin
Claes Lundström
42
5
0
16 May 2024
Uncertainty Aware Neural Network from Similarity and Sensitivity
Uncertainty Aware Neural Network from Similarity and Sensitivity
H. M. D. Kabir
S. Mondal
Sadia Khanam
Abbas Khosravi
Shafin Rahman
...
R. Alizadehsani
Houshyar Asadi
Shady M. K. Mohamed
Saeid Nahavandi
Usha R. Acharya
AAML
28
4
0
27 Apr 2023
Post-hoc Uncertainty Learning using a Dirichlet Meta-Model
Post-hoc Uncertainty Learning using a Dirichlet Meta-Model
Maohao Shen
Yuheng Bu
P. Sattigeri
S. Ghosh
Subhro Das
G. Wornell
UQCV
OOD
BDL
13
31
0
14 Dec 2022
Uncertainty Quantification for Rule-Based Models
Uncertainty Quantification for Rule-Based Models
Yusik Kim
UQCV
12
0
0
03 Nov 2022
Performance Prediction Under Dataset Shift
Performance Prediction Under Dataset Shift
Simona Maggio
Victor Bouvier
L. Dreyfus-Schmidt
OOD
AI4TS
21
2
0
21 Jun 2022
Uncertainty Quantification 360: A Holistic Toolkit for Quantifying and
  Communicating the Uncertainty of AI
Uncertainty Quantification 360: A Holistic Toolkit for Quantifying and Communicating the Uncertainty of AI
S. Ghosh
Q. V. Liao
K. Ramamurthy
Jirí Navrátil
P. Sattigeri
Kush R. Varshney
Yunfeng Zhang
6
36
0
02 Jun 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,675
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
185
3,267
0
09 Jun 2012
1