Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.07913
Cited By
Quantizing data for distributed learning
14 December 2020
Osama A. Hanna
Yahya H. Ezzeldin
Christina Fragouli
Suhas Diggavi
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Quantizing data for distributed learning"
24 / 24 papers shown
Title
Influence Functions in Deep Learning Are Fragile
S. Basu
Phillip E. Pope
Soheil Feizi
TDI
77
226
0
25 Jun 2020
SQuARM-SGD: Communication-Efficient Momentum SGD for Decentralized Optimization
Navjot Singh
Deepesh Data
Jemin George
Suhas Diggavi
23
55
0
13 May 2020
RATQ: A Universal Fixed-Length Quantizer for Stochastic Optimization
Prathamesh Mayekar
Himanshu Tyagi
MQ
48
48
0
22 Aug 2019
Fixing the train-test resolution discrepancy
Hugo Touvron
Andrea Vedaldi
Matthijs Douze
Hervé Jégou
102
423
0
14 Jun 2019
Qsparse-local-SGD: Distributed SGD with Quantization, Sparsification, and Local Computations
Debraj Basu
Deepesh Data
C. Karakuş
Suhas Diggavi
MQ
38
403
0
06 Jun 2019
Efficient Augmentation via Data Subsampling
Michael Kuchnik
Virginia Smith
82
22
0
11 Oct 2018
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLM
SSL
SSeg
951
93,936
0
11 Oct 2018
The Convergence of Sparsified Gradient Methods
Dan Alistarh
Torsten Hoefler
M. Johansson
Sarit Khirirat
Nikola Konstantinov
Cédric Renggli
114
491
0
27 Sep 2018
Sparsified SGD with Memory
Sebastian U. Stich
Jean-Baptiste Cordonnier
Martin Jaggi
66
743
0
20 Sep 2018
Error Compensated Quantized SGD and its Applications to Large-scale Distributed Optimization
Jiaxiang Wu
Weidong Huang
Junzhou Huang
Tong Zhang
59
235
0
21 Jun 2018
cpSGD: Communication-efficient and differentially-private distributed SGD
Naman Agarwal
A. Suresh
Felix X. Yu
Sanjiv Kumar
H. B. McMahan
FedML
111
490
0
27 May 2018
signSGD: Compressed Optimisation for Non-Convex Problems
Jeremy Bernstein
Yu Wang
Kamyar Azizzadenesheli
Anima Anandkumar
FedML
ODL
78
1,026
0
13 Feb 2018
Regularized Evolution for Image Classifier Architecture Search
Esteban Real
A. Aggarwal
Yanping Huang
Quoc V. Le
125
3,021
0
05 Feb 2018
Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training
Chengyue Wu
Song Han
Huizi Mao
Yu Wang
W. Dally
102
1,399
0
05 Dec 2017
TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning
W. Wen
Cong Xu
Feng Yan
Chunpeng Wu
Yandan Wang
Yiran Chen
Hai Helen Li
123
985
0
22 May 2017
Sparse Communication for Distributed Gradient Descent
Alham Fikri Aji
Kenneth Heafield
56
738
0
17 Apr 2017
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
136
2,854
0
14 Mar 2017
Distributed Mean Estimation with Limited Communication
A. Suresh
Felix X. Yu
Sanjiv Kumar
H. B. McMahan
FedML
93
362
0
02 Nov 2016
QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding
Dan Alistarh
Demjan Grubic
Jerry Li
Ryota Tomioka
Milan Vojnović
MQ
53
425
0
07 Oct 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.4K
192,638
0
10 Dec 2015
Taming the Wild: A Unified Analysis of Hogwild!-Style Algorithms
Christopher De Sa
Ce Zhang
K. Olukotun
Christopher Ré
52
204
0
22 Jun 2015
Stochastic Optimization with Importance Sampling
P. Zhao
Tong Zhang
63
343
0
13 Jan 2014
Stochastic First- and Zeroth-order Methods for Nonconvex Stochastic Programming
Saeed Ghadimi
Guanghui Lan
ODL
71
1,538
0
22 Sep 2013
Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization
Alekh Agarwal
Peter L. Bartlett
Pradeep Ravikumar
Martin J. Wainwright
118
248
0
03 Sep 2010
1