Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.07723
Cited By
Evolutionary learning of interpretable decision trees
14 December 2020
Leonardo Lucio Custode
Giovanni Iacca
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Evolutionary learning of interpretable decision trees"
14 / 14 papers shown
Title
Evolutionary Reinforcement Learning for Interpretable Decision-Making in Supply Chain Management
Stefano Genetti
Alberto Longobardi
Giovanni Iacca
51
0
0
16 Apr 2025
SMOSE: Sparse Mixture of Shallow Experts for Interpretable Reinforcement Learning in Continuous Control Tasks
Mátyás Vincze
Laura Ferrarotti
Leonardo Lucio Custode
Bruno Lepri
Giovanni Iacca
MoE
OffRL
66
1
0
17 Dec 2024
Evolutionary Computation and Explainable AI: A Roadmap to Transparent Intelligent Systems
Ryan Zhou
Jaume Bacardit
Alexander Brownlee
Stefano Cagnoni
Martin Fyvie
Giovanni Iacca
John Mccall
N. V. Stein
David Walker
Ting-Kuei Hu
39
0
0
12 Jun 2024
Evo* 2023 -- Late-Breaking Abstracts Volume
A. M. Mora
Christopher J. Tralie
23
0
0
20 Mar 2024
Social Interpretable Reinforcement Learning
Leonardo Lucio Custode
Giovanni Iacca
OffRL
37
2
0
27 Jan 2024
Explainable Artificial Intelligence for Drug Discovery and Development -- A Comprehensive Survey
R. Alizadehsani
Solomon Sunday Oyelere
Sadiq Hussain
Rene Ripardo Calixto
V. H. C. de Albuquerque
M. Roshanzamir
Mohamed Rahouti
Senthil Kumar Jagatheesaperumal
37
17
0
21 Sep 2023
TreeC: a method to generate interpretable energy management systems using a metaheuristic algorithm
Julian Ruddick
L. R. Camargo
M. A. Putratama
M. Messagie
Thierry Coosemans
10
2
0
17 Apr 2023
A Survey on Explainable Reinforcement Learning: Concepts, Algorithms, Challenges
Yunpeng Qing
Shunyu Liu
Jie Song
Huiqiong Wang
Mingli Song
XAI
25
1
0
12 Nov 2022
Quality Diversity Evolutionary Learning of Decision Trees
Andrea Ferigo
Leonardo Lucio Custode
Giovanni Iacca
19
12
0
17 Aug 2022
Interpretable AI for policy-making in pandemics
Leonardo Lucio Custode
Giovanni Iacca
17
9
0
08 Apr 2022
Interpretable pipelines with evolutionarily optimized modules for RL tasks with visual inputs
Leonardo Lucio Custode
Giovanni Iacca
13
13
0
10 Feb 2022
Model Learning with Personalized Interpretability Estimation (ML-PIE)
M. Virgolin
A. D. Lorenzo
Francesca Randone
Eric Medvet
M. Wahde
16
29
0
13 Apr 2021
Model Interpretability through the Lens of Computational Complexity
Pablo Barceló
Mikaël Monet
Jorge A. Pérez
Bernardo Subercaseaux
116
94
0
23 Oct 2020
Reinforcement Learning for Optimization of COVID-19 Mitigation policies
Varun Kompella
Roberto Capobianco
Stacy Jong
Jonathan Browne
S. Fox
L. Meyers
Peter R. Wurman
Peter Stone
64
46
0
20 Oct 2020
1