Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.07219
Cited By
Breaking the Expressive Bottlenecks of Graph Neural Networks
14 December 2020
Mingqi Yang
Yanming Shen
Heng Qi
Baocai Yin
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Breaking the Expressive Bottlenecks of Graph Neural Networks"
8 / 8 papers shown
Title
Graph Neural Networks-based Hybrid Framework For Predicting Particle Crushing Strength
Tongya Zheng
Tianli Zhang
Qingzheng Guan
Wenjie Huang
Zunlei Feng
Min-Gyoo Song
Chun-Yen Chen
AI4CE
31
1
0
26 Jul 2023
Node-wise Hardware Trojan Detection Based on Graph Learning
Kento Hasegawa
Kazuki Yamashita
Seira Hidano
Kazuhide Fukushima
Kazuo Hashimoto
N. Togawa
19
24
0
04 Dec 2021
First Place Solution of KDD Cup 2021 & OGB Large-Scale Challenge Graph Prediction Track
Chengxuan Ying
Mingqi Yang
Shuxin Zheng
Guolin Ke
Shengjie Luo
Tianle Cai
Chenglin Wu
Yuxin Wang
Yanming Shen
Di He
16
11
0
15 Jun 2021
Do Transformers Really Perform Bad for Graph Representation?
Chengxuan Ying
Tianle Cai
Shengjie Luo
Shuxin Zheng
Guolin Ke
Di He
Yanming Shen
Tie-Yan Liu
GNN
28
433
0
09 Jun 2021
A Survey on The Expressive Power of Graph Neural Networks
Ryoma Sato
184
172
0
09 Mar 2020
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
267
1,945
0
09 Jun 2018
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
175
1,778
0
02 Mar 2017
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
253
3,239
0
24 Nov 2016
1