Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.07127
Cited By
Accelerating high-throughput virtual screening through molecular pool-based active learning
13 December 2020
David E. Graff
E. Shakhnovich
Connor W. Coley
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Accelerating high-throughput virtual screening through molecular pool-based active learning"
43 / 43 papers shown
Title
GOLLuM: Gaussian Process Optimized LLMs -- Reframing LLM Finetuning through Bayesian Optimization
Bojana Ranković
P. Schwaller
BDL
169
0
0
08 Apr 2025
Preferential Multi-Objective Bayesian Optimization for Drug Discovery
Tai Dang
Long-Hung Pham
Sang T. Truong
Ari Glenn
Wendy Nguyen
Edward A. Pham
Jeffrey S. Glenn
Sanmi Koyejo
Thang Luong
69
0
0
21 Mar 2025
Efficient Biological Data Acquisition through Inference Set Design
Ihor Neporozhnii
Julien Roy
Emmanuel Bengio
Jason Hartford
48
0
0
25 Oct 2024
Ranking over Regression for Bayesian Optimization and Molecule Selection
Gary Tom
Stanley Lo
Samantha Corapi
Alán Aspuru-Guzik
Benjamín Sánchez-Lengeling
BDL
41
0
0
11 Oct 2024
Batched Bayesian optimization by maximizing the probability of including the optimum
Jenna C. Fromer
Runzhong Wang
Mrunali Manjrekar
Austin Tripp
José Miguel Hernández-Lobato
Connor W. Coley
47
0
0
08 Oct 2024
Generative Flows on Synthetic Pathway for Drug Design
Seonghwan Seo
Minsu Kim
Tony Shen
Martin Ester
Jinkyoo Park
Sungsoo Ahn
Woo Youn Kim
39
3
0
06 Oct 2024
Closed-Form Test Functions for Biophysical Sequence Optimization Algorithms
Samuel Stanton
R. Alberstein
Nathan C. Frey
Andrew Watkins
Kyunghyun Cho
27
4
0
28 Jun 2024
Efficient Evolutionary Search Over Chemical Space with Large Language Models
Haorui Wang
Marta Skreta
C. Ser
Wenhao Gao
Lingkai Kong
...
Yanqiao Zhu
Yuanqi Du
Alán Aspuru-Guzik
Kirill Neklyudov
Chao Zhang
47
12
0
23 Jun 2024
AI-coupled HPC Workflow Applications, Middleware and Performance
Wes Brewer
Ana Gainaru
Frédéric Suter
Feiyi Wang
M. Emani
S. Jha
30
10
0
20 Jun 2024
Understanding active learning of molecular docking and its applications
Jeonghyeon Kim
Juno Nam
Seongok Ryu
35
0
0
14 Jun 2024
Scoreformer: A Surrogate Model For Large-Scale Prediction of Docking Scores
Álvaro Ciudad
Adrián Morales-Pastor
Laura Malo
Isaac Filella-Merce
Víctor Guallar
Alexis Molina
51
0
0
13 Jun 2024
How Useful is Intermittent, Asynchronous Expert Feedback for Bayesian Optimization?
Agustinus Kristiadi
Felix Strieth-Kalthoff
Sriram Ganapathi Subramanian
Vincent Fortuin
Pascal Poupart
Geoff Pleiss
44
2
0
10 Jun 2024
Structure-based Drug Design Benchmark: Do 3D Methods Really Dominate?
Kangyu Zheng
Yingzhou Lu
Zaixi Zhang
Zhongwei Wan
Yao Ma
Marinka Zitnik
Tianfan Fu
ELM
34
6
0
04 Jun 2024
Generative Active Learning for the Search of Small-molecule Protein Binders
Maksym Korablyov
Cheng-Hao Liu
Moksh Jain
A. V. D. Sloot
Eric Jolicoeur
...
Marwin H. S. Segler
Michael M. Bronstein
A. Marinier
Mike Tyers
Yoshua Bengio
21
4
0
02 May 2024
Uplift Modeling Under Limited Supervision
G. Panagopoulos
Daniele Malitesta
Fragkiskos D. Malliaros
Jun Pang
CML
40
0
0
28 Mar 2024
A Sober Look at LLMs for Material Discovery: Are They Actually Good for Bayesian Optimization Over Molecules?
Agustinus Kristiadi
Felix Strieth-Kalthoff
Marta Skreta
Pascal Poupart
Alán Aspuru-Guzik
Geoff Pleiss
30
21
0
07 Feb 2024
Navigating the Maize: Cyclic and conditional computational graphs for molecular simulation
Thomas Löhr
Michael Dodds
Lili Cao
Mikhail Kabeshov
Michele Assante
J. Janet
Marco Klähn
Ola Engkvist
16
0
0
22 Jan 2024
Beyond Regrets: Geometric Metrics for Bayesian Optimization
Jungtaek Kim
29
0
0
03 Jan 2024
Multimodal deep representation learning for quantum cross-platform verification
Yan Qian
Yuxuan Du
Zhenliang He
Min-hsiu Hsieh
Dacheng Tao
30
8
0
07 Nov 2023
Pareto Optimization to Accelerate Multi-Objective Virtual Screening
Jenna C. Fromer
David E. Graff
Connor W. Coley
23
7
0
16 Oct 2023
Molecular De Novo Design through Transformer-based Reinforcement Learning
Pengcheng Xu
Tao Feng
Tianfan Fu
Siddhartha Laghuvarapu
Jimeng Sun
14
1
0
09 Oct 2023
De Novo Drug Design with Joint Transformers
Adam Izdebski
Ewelina Węglarz-Tomczak
Ewa Szczurek
Jakub M. Tomczak
ViT
21
3
0
03 Oct 2023
PharmacoNet: Accelerating Large-Scale Virtual Screening by Deep Pharmacophore Modeling
Seonghwan Seo
Woo Youn Kim
18
4
0
01 Oct 2023
Large-scale Pretraining Improves Sample Efficiency of Active Learning based Molecule Virtual Screening
Zhonglin Cao
Simone Sciabola
Ye Wang
32
1
0
20 Sep 2023
Will More Expressive Graph Neural Networks do Better on Generative Tasks?
Xian-Quan Zou
Xiangyu Zhao
Pietro Lio'
Yiren Zhao
15
2
0
23 Aug 2023
Optimizing Drug Design by Merging Generative AI With Active Learning Frameworks
Isaac Filella-Merce
Alexis Molina
Marek Orzechowski
Lucía Díaz
Yangnv Zhu
Julia Vilalta Mor
Laura Malo
Ajay Yekkirala
Soumya S. Ray
Víctor Guallar
AI4CE
14
5
0
04 May 2023
Calibration and generalizability of probabilistic models on low-data chemical datasets with DIONYSUS
Gary Tom
Riley J. Hickman
Aniket N. Zinzuwadia
A. Mohajeri
Benjamín Sánchez-Lengeling
A. Aspuru‐Guzik
21
16
0
03 Dec 2022
Reinforced Genetic Algorithm for Structure-based Drug Design
Tianfan Fu
Wenhao Gao
Connor W. Coley
Jimeng Sun
25
51
0
28 Nov 2022
Recent Developments in Structure-Based Virtual Screening Approaches
C. Gorgulla
16
0
0
06 Nov 2022
Discovering Many Diverse Solutions with Bayesian Optimization
N. Maus
Kaiwen Wu
David Eriksson
J. Gardner
16
23
0
20 Oct 2022
An efficient graph generative model for navigating ultra-large combinatorial synthesis libraries
Aryan Pedawi
P. Gniewek
Chao-Ling Chang
Brandon M. Anderson
H. V. D. Bedem
22
5
0
19 Oct 2022
Accurate, reliable and interpretable solubility prediction of druglike molecules with attention pooling and Bayesian learning
Seongok Ryu
Sumin Lee
16
5
0
29 Sep 2022
Efficient Chemical Space Exploration Using Active Learning Based on Marginalized Graph Kernel: an Application for Predicting the Thermodynamic Properties of Alkanes with Molecular Simulation
Yan Xiang
Yunhao Tang
Zheng Gong
Hongyi Liu
Liang Wu
Guang Lin
Huai Sun
AI4CE
20
0
0
01 Sep 2022
Self-focusing virtual screening with active design space pruning
David E. Graff
Matteo Aldeghi
Joseph A. Morrone
K. E. Jordan
Edward O. Pyzer-Knapp
Connor W. Coley
24
24
0
03 May 2022
Bayesian optimization with known experimental and design constraints for chemistry applications
Riley J. Hickman
Matteo Aldeghi
Florian Hase
A. Aspuru‐Guzik
13
21
0
29 Mar 2022
Local Latent Space Bayesian Optimization over Structured Inputs
N. Maus
Haydn Jones
Juston Moore
Matt J. Kusner
John Bradshaw
J. Gardner
BDL
51
69
0
28 Jan 2022
Bringing Atomistic Deep Learning to Prime Time
Nathan C. Frey
S. Samsi
Bharath Ramsundar
Connor W. Coley
V. Gadepally
AI4CE
20
0
0
09 Dec 2021
A Review on Parallel Virtual Screening Softwares for High Performance Computers
N. A. Murugan
Artur Podobas
Davide Gadioli
Emanuele Vitali
G. Palermo
Stefano Markidis
19
32
0
30 Nov 2021
Docking-based Virtual Screening with Multi-Task Learning
Zijing Liu
Xianbin Ye
Xiaomin Fang
Fan Wang
Hua-Hong Wu
Haifeng Wang
14
2
0
18 Nov 2021
DOCKSTRING: easy molecular docking yields better benchmarks for ligand design
Miguel García-Ortegón
G. Simm
Austin Tripp
José Miguel Hernández-Lobato
A. Bender
S. Bacallado
37
75
0
29 Oct 2021
Opportunities for Machine Learning to Accelerate Halide Perovskite Commercialization and Scale-Up
Rishi E. Kumar
A. Tiihonen
Shijing Sun
D. Fenning
Zhe Liu
Tonio Buonassisi
17
10
0
08 Oct 2021
Benchmarking the Performance of Bayesian Optimization across Multiple Experimental Materials Science Domains
Qiaohao Liang
Aldair E. Gongora
Zekun Ren
A. Tiihonen
Zhe Liu
...
K. Hippalgaonkar
Benji Maruyama
Keith A. Brown
John W Fisher Iii
Tonio Buonassisi
29
118
0
23 May 2021
Therapeutics Data Commons: Machine Learning Datasets and Tasks for Drug Discovery and Development
Kexin Huang
Tianfan Fu
Wenhao Gao
Yue Zhao
Yusuf Roohani
J. Leskovec
Connor W. Coley
Cao Xiao
Jimeng Sun
Marinka Zitnik
OOD
LM&MA
30
261
0
18 Feb 2021
1