Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.06898
Cited By
Revisiting "Qualitatively Characterizing Neural Network Optimization Problems"
12 December 2020
Jonathan Frankle
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Revisiting "Qualitatively Characterizing Neural Network Optimization Problems""
9 / 9 papers shown
Title
High-dimensional manifold of solutions in neural networks: insights from statistical physics
Enrico M. Malatesta
51
4
0
20 Feb 2025
Git Re-Basin: Merging Models modulo Permutation Symmetries
Samuel K. Ainsworth
J. Hayase
S. Srinivasa
MoMe
255
316
0
11 Sep 2022
FuNNscope: Visual microscope for interactively exploring the loss landscape of fully connected neural networks
Aleksandar Doknic
Torsten Moller
33
2
0
09 Apr 2022
Fusing finetuned models for better pretraining
Leshem Choshen
Elad Venezian
Noam Slonim
Yoav Katz
FedML
AI4CE
MoMe
54
87
0
06 Apr 2022
When Do Flat Minima Optimizers Work?
Jean Kaddour
Linqing Liu
Ricardo M. A. Silva
Matt J. Kusner
ODL
24
58
0
01 Feb 2022
Connecting Low-Loss Subspace for Personalized Federated Learning
S. Hahn
Minwoo Jeong
Junghye Lee
FedML
24
18
0
16 Sep 2021
What can linear interpolation of neural network loss landscapes tell us?
Tiffany J. Vlaar
Jonathan Frankle
MoMe
30
27
0
30 Jun 2021
Analyzing Monotonic Linear Interpolation in Neural Network Loss Landscapes
James Lucas
Juhan Bae
Michael Ruogu Zhang
Stanislav Fort
R. Zemel
Roger C. Grosse
MoMe
164
28
0
22 Apr 2021
Learning Neural Network Subspaces
Mitchell Wortsman
Maxwell Horton
Carlos Guestrin
Ali Farhadi
Mohammad Rastegari
UQCV
27
85
0
20 Feb 2021
1