Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.06421
Cited By
When is Memorization of Irrelevant Training Data Necessary for High-Accuracy Learning?
11 December 2020
Gavin Brown
Mark Bun
Vitaly Feldman
Adam D. Smith
Kunal Talwar
Re-assign community
ArXiv
PDF
HTML
Papers citing
"When is Memorization of Irrelevant Training Data Necessary for High-Accuracy Learning?"
31 / 31 papers shown
Title
Undesirable Memorization in Large Language Models: A Survey
Ali Satvaty
Suzan Verberne
Fatih Turkmen
ELM
PILM
71
7
0
03 Oct 2024
Range Membership Inference Attacks
Jiashu Tao
Reza Shokri
42
1
0
09 Aug 2024
A Survey on Machine Unlearning: Techniques and New Emerged Privacy Risks
Hengzhu Liu
Ping Xiong
Tianqing Zhu
Philip S. Yu
32
6
0
10 Jun 2024
Data Reconstruction: When You See It and When You Don't
Edith Cohen
Haim Kaplan
Yishay Mansour
Shay Moran
Kobbi Nissim
Uri Stemmer
Eliad Tsfadia
AAML
42
2
0
24 May 2024
Deconstructing Data Reconstruction: Multiclass, Weight Decay and General Losses
G. Buzaglo
Niv Haim
Gilad Yehudai
Gal Vardi
Yakir Oz
Yaniv Nikankin
Michal Irani
28
10
0
04 Jul 2023
Memory-Query Tradeoffs for Randomized Convex Optimization
X. Chen
Binghui Peng
36
6
0
21 Jun 2023
AI Model Disgorgement: Methods and Choices
Alessandro Achille
Michael Kearns
Carson Klingenberg
Stefano Soatto
MU
23
11
0
07 Apr 2023
On Differential Privacy and Adaptive Data Analysis with Bounded Space
Itai Dinur
Uri Stemmer
David P. Woodruff
Samson Zhou
16
12
0
11 Feb 2023
Understanding Reconstruction Attacks with the Neural Tangent Kernel and Dataset Distillation
Noel Loo
Ramin Hasani
Mathias Lechner
Alexander Amini
Daniela Rus
DD
34
5
0
02 Feb 2023
Leveraging Unlabeled Data to Track Memorization
Mahsa Forouzesh
Hanie Sedghi
Patrick Thiran
NoLa
TDI
34
3
0
08 Dec 2022
Verifiable and Provably Secure Machine Unlearning
Thorsten Eisenhofer
Doreen Riepel
Varun Chandrasekaran
Esha Ghosh
O. Ohrimenko
Nicolas Papernot
AAML
MU
33
26
0
17 Oct 2022
Understanding Transformer Memorization Recall Through Idioms
Adi Haviv
Ido Cohen
Jacob Gidron
R. Schuster
Yoav Goldberg
Mor Geva
28
48
0
07 Oct 2022
On the Impossible Safety of Large AI Models
El-Mahdi El-Mhamdi
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
L. Hoang
Rafael Pinot
Sébastien Rouault
John Stephan
30
31
0
30 Sep 2022
Metadata Archaeology: Unearthing Data Subsets by Leveraging Training Dynamics
Shoaib Ahmed Siddiqui
Nitarshan Rajkumar
Tegan Maharaj
David M. Krueger
Sara Hooker
37
27
0
20 Sep 2022
The Privacy Onion Effect: Memorization is Relative
Nicholas Carlini
Matthew Jagielski
Chiyuan Zhang
Nicolas Papernot
Andreas Terzis
Florian Tramèr
PILM
MIACV
33
99
0
21 Jun 2022
Reconstructing Training Data from Trained Neural Networks
Niv Haim
Gal Vardi
Gilad Yehudai
Ohad Shamir
Michal Irani
40
132
0
15 Jun 2022
Offline Reinforcement Learning with Differential Privacy
Dan Qiao
Yu-Xiang Wang
OffRL
36
23
0
02 Jun 2022
Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models
Kushal Tirumala
Aram H. Markosyan
Luke Zettlemoyer
Armen Aghajanyan
TDI
26
185
0
22 May 2022
Memory Bounds for Continual Learning
Xi Chen
Christos H. Papadimitriou
Binghui Peng
CLL
LRM
27
22
0
22 Apr 2022
Deduplicating Training Data Mitigates Privacy Risks in Language Models
Nikhil Kandpal
Eric Wallace
Colin Raffel
PILM
MU
28
274
0
14 Feb 2022
Deletion Inference, Reconstruction, and Compliance in Machine (Un)Learning
Ji Gao
Sanjam Garg
Mohammad Mahmoody
Prashant Nalini Vasudevan
MIACV
AAML
19
22
0
07 Feb 2022
Datamodels: Predicting Predictions from Training Data
Andrew Ilyas
Sung Min Park
Logan Engstrom
Guillaume Leclerc
A. Madry
TDI
38
130
0
01 Feb 2022
Reconstructing Training Data with Informed Adversaries
Borja Balle
Giovanni Cherubin
Jamie Hayes
MIACV
AAML
35
158
0
13 Jan 2022
Membership Inference Attacks From First Principles
Nicholas Carlini
Steve Chien
Milad Nasr
Shuang Song
Andreas Terzis
Florian Tramèr
MIACV
MIALM
24
639
0
07 Dec 2021
What Do We Mean by Generalization in Federated Learning?
Honglin Yuan
Warren Morningstar
Lin Ning
K. Singhal
OOD
FedML
35
71
0
27 Oct 2021
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
134
346
0
13 Oct 2021
Large-Scale Differentially Private BERT
Rohan Anil
Badih Ghazi
Vineet Gupta
Ravi Kumar
Pasin Manurangsi
33
131
0
03 Aug 2021
Covariance-Aware Private Mean Estimation Without Private Covariance Estimation
Gavin Brown
Marco Gaboardi
Adam D. Smith
Jonathan R. Ullman
Lydia Zakynthinou
FedML
28
48
0
24 Jun 2021
Membership Inference on Word Embedding and Beyond
Saeed Mahloujifar
Huseyin A. Inan
Melissa Chase
Esha Ghosh
Marcello Hasegawa
MIACV
SILM
19
46
0
21 Jun 2021
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
290
1,814
0
14 Dec 2020
Sample Complexity Bounds on Differentially Private Learning via Communication Complexity
Vitaly Feldman
David Xiao
169
71
0
25 Feb 2014
1