ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.06337
  4. Cited By
Privacy and Robustness in Federated Learning: Attacks and Defenses

Privacy and Robustness in Federated Learning: Attacks and Defenses

7 December 2020
Lingjuan Lyu
Han Yu
Xingjun Ma
Chen Chen
Lichao Sun
Jun Zhao
Qiang Yang
Philip S. Yu
    FedML
ArXivPDFHTML

Papers citing "Privacy and Robustness in Federated Learning: Attacks and Defenses"

30 / 130 papers shown
Title
Byzantine Stochastic Gradient Descent
Byzantine Stochastic Gradient Descent
Dan Alistarh
Zeyuan Allen-Zhu
Jingkai Li
FedML
68
296
0
23 Mar 2018
Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates
Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates
Dong Yin
Yudong Chen
Kannan Ramchandran
Peter L. Bartlett
OOD
FedML
118
1,500
0
05 Mar 2018
Generalized Byzantine-tolerant SGD
Generalized Byzantine-tolerant SGD
Cong Xie
Oluwasanmi Koyejo
Indranil Gupta
AAML
73
258
0
27 Feb 2018
Scalable Private Learning with PATE
Scalable Private Learning with PATE
Nicolas Papernot
Shuang Song
Ilya Mironov
A. Raghunathan
Kunal Talwar
Ulfar Erlingsson
100
616
0
24 Feb 2018
The Hidden Vulnerability of Distributed Learning in Byzantium
The Hidden Vulnerability of Distributed Learning in Byzantium
El-Mahdi El-Mhamdi
R. Guerraoui
Sébastien Rouault
AAML
FedML
67
748
0
22 Feb 2018
Chameleon: A Hybrid Secure Computation Framework for Machine Learning
  Applications
Chameleon: A Hybrid Secure Computation Framework for Machine Learning Applications
M. Riazi
Christian Weinert
Oleksandr Tkachenko
Ebrahim M. Songhori
T. Schneider
F. Koushanfar
FedML
46
494
0
10 Jan 2018
Differentially Private Federated Learning: A Client Level Perspective
Differentially Private Federated Learning: A Client Level Perspective
Robin C. Geyer
T. Klein
Moin Nabi
FedML
125
1,295
0
20 Dec 2017
Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning
Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning
Xinyun Chen
Chang-rui Liu
Yue Liu
Kimberly Lu
D. Song
AAML
SILM
135
1,837
0
15 Dec 2017
Private federated learning on vertically partitioned data via entity
  resolution and additively homomorphic encryption
Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption
Stephen Hardy
Wilko Henecka
Hamish Ivey-Law
Richard Nock
Giorgio Patrini
Guillaume Smith
Brian Thorne
FedML
65
535
0
29 Nov 2017
Neural Trojans
Neural Trojans
Yuntao Liu
Yang Xie
Ankur Srivastava
AAML
49
354
0
03 Oct 2017
Towards Poisoning of Deep Learning Algorithms with Back-gradient
  Optimization
Towards Poisoning of Deep Learning Algorithms with Back-gradient Optimization
Luis Muñoz-González
Battista Biggio
Ambra Demontis
Andrea Paudice
Vasin Wongrassamee
Emil C. Lupu
Fabio Roli
AAML
99
632
0
29 Aug 2017
BadNets: Identifying Vulnerabilities in the Machine Learning Model
  Supply Chain
BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain
Tianyu Gu
Brendan Dolan-Gavitt
S. Garg
SILM
120
1,772
0
22 Aug 2017
Evasion Attacks against Machine Learning at Test Time
Evasion Attacks against Machine Learning at Test Time
Battista Biggio
Igino Corona
Davide Maiorca
B. Nelson
Nedim Srndic
Pavel Laskov
Giorgio Giacinto
Fabio Roli
AAML
157
2,151
0
21 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
304
12,069
0
19 Jun 2017
Certified Defenses for Data Poisoning Attacks
Certified Defenses for Data Poisoning Attacks
Jacob Steinhardt
Pang Wei Koh
Percy Liang
AAML
92
755
0
09 Jun 2017
Resilience: A Criterion for Learning in the Presence of Arbitrary
  Outliers
Resilience: A Criterion for Learning in the Presence of Arbitrary Outliers
Jacob Steinhardt
Moses Charikar
Gregory Valiant
64
140
0
15 Mar 2017
Understanding Black-box Predictions via Influence Functions
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
208
2,894
0
14 Mar 2017
Deep Models Under the GAN: Information Leakage from Collaborative Deep
  Learning
Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning
Briland Hitaj
G. Ateniese
Fernando Perez-Cruz
FedML
117
1,404
0
24 Feb 2017
Understanding deep learning requires rethinking generalization
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
339
4,626
0
10 Nov 2016
Membership Inference Attacks against Machine Learning Models
Membership Inference Attacks against Machine Learning Models
Reza Shokri
M. Stronati
Congzheng Song
Vitaly Shmatikov
SLR
MIALM
MIACV
249
4,135
0
18 Oct 2016
Semi-supervised Knowledge Transfer for Deep Learning from Private
  Training Data
Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data
Nicolas Papernot
Martín Abadi
Ulfar Erlingsson
Ian Goodfellow
Kunal Talwar
77
1,017
0
18 Oct 2016
Stealing Machine Learning Models via Prediction APIs
Stealing Machine Learning Models via Prediction APIs
Florian Tramèr
Fan Zhang
Ari Juels
Michael K. Reiter
Thomas Ristenpart
SILM
MLAU
107
1,805
0
09 Sep 2016
Deep Learning with Differential Privacy
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
203
6,121
0
01 Jul 2016
On the Convergence of A Family of Robust Losses for Stochastic Gradient
  Descent
On the Convergence of A Family of Robust Losses for Stochastic Gradient Descent
Bo Han
Ivor W. Tsang
Ling-Hao Chen
NoLa
67
21
0
05 May 2016
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
406
17,468
0
17 Feb 2016
Learning Privately from Multiparty Data
Learning Privately from Multiparty Data
Jihun Hamm
Yingjun Cao
M. Belkin
FedML
45
165
0
10 Feb 2016
RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response
RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response
Ulfar Erlingsson
Vasyl Pihur
Aleksandra Korolova
96
1,992
0
25 Jul 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
270
14,918
1
21 Dec 2013
Poisoning Attacks against Support Vector Machines
Poisoning Attacks against Support Vector Machines
Battista Biggio
B. Nelson
Pavel Laskov
AAML
112
1,590
0
27 Jun 2012
Differentially Private Empirical Risk Minimization
Differentially Private Empirical Risk Minimization
Kamalika Chaudhuri
C. Monteleoni
Anand D. Sarwate
128
1,487
0
01 Dec 2009
Previous
123