ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.06191
  4. Cited By
Neural Dynamic Mode Decomposition for End-to-End Modeling of Nonlinear
  Dynamics

Neural Dynamic Mode Decomposition for End-to-End Modeling of Nonlinear Dynamics

11 December 2020
Tomoharu Iwata
Yoshinobu Kawahara
ArXivPDFHTML

Papers citing "Neural Dynamic Mode Decomposition for End-to-End Modeling of Nonlinear Dynamics"

3 / 3 papers shown
Title
Multifactor Sequential Disentanglement via Structured Koopman
  Autoencoders
Multifactor Sequential Disentanglement via Structured Koopman Autoencoders
Nimrod Berman
Ilana D Naiman
Omri Azencot
CoGe
32
22
0
30 Mar 2023
Data-driven End-to-end Learning of Pole Placement Control for Nonlinear
  Dynamics via Koopman Invariant Subspaces
Data-driven End-to-end Learning of Pole Placement Control for Nonlinear Dynamics via Koopman Invariant Subspaces
Tomoharu Iwata
Yoshinobu Kawahara
19
3
0
16 Aug 2022
Koopman Spectrum Nonlinear Regulators and Efficient Online Learning
Koopman Spectrum Nonlinear Regulators and Efficient Online Learning
Motoya Ohnishi
Isao Ishikawa
Kendall Lowrey
Masahiro Ikeda
Sham Kakade
Yoshinobu Kawahara
21
5
0
30 Jun 2021
1