Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.06081
Cited By
Deep Neural Networks Are Effective At Learning High-Dimensional Hilbert-Valued Functions From Limited Data
11 December 2020
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Neural Networks Are Effective At Learning High-Dimensional Hilbert-Valued Functions From Limited Data"
18 / 18 papers shown
Title
Operator Learning Using Random Features: A Tool for Scientific Computing
Nicholas H. Nelsen
Andrew M. Stuart
37
12
0
12 Aug 2024
Physics-informed deep learning and compressive collocation for high-dimensional diffusion-reaction equations: practical existence theory and numerics
Simone Brugiapaglia
N. Dexter
Samir Karam
Weiqi Wang
AI4CE
DiffM
37
1
0
03 Jun 2024
Learning smooth functions in high dimensions: from sparse polynomials to deep neural networks
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
37
4
0
04 Apr 2024
Response Theory via Generative Score Modeling
L. T. Giorgini
Katherine Deck
Tobias Bischoff
Andre N. Souza
38
9
0
01 Feb 2024
A practical existence theorem for reduced order models based on convolutional autoencoders
N. R. Franco
Simone Brugiapaglia
AI4CE
29
4
0
01 Feb 2024
A unified framework for learning with nonlinear model classes from arbitrary linear samples
Ben Adcock
Juan M. Cardenas
N. Dexter
29
3
0
25 Nov 2023
Neural Snowflakes: Universal Latent Graph Inference via Trainable Latent Geometries
Haitz Sáez de Ocáriz Borde
Anastasis Kratsios
31
4
0
23 Oct 2023
Active Learning for Single Neuron Models with Lipschitz Non-Linearities
Aarshvi Gajjar
C. Hegde
Christopher Musco
14
11
0
24 Oct 2022
CAS4DL: Christoffel Adaptive Sampling for function approximation via Deep Learning
Ben Adcock
Juan M. Cardenas
N. Dexter
25
8
0
25 Aug 2022
Compressive Fourier collocation methods for high-dimensional diffusion equations with periodic boundary conditions
Weiqi Wang
Simone Brugiapaglia
17
2
0
02 Jun 2022
Optimal Learning
P. Binev
A. Bonito
Ronald A. DeVore
G. Petrova
FedML
30
0
0
30 Mar 2022
On efficient algorithms for computing near-best polynomial approximations to high-dimensional, Hilbert-valued functions from limited samples
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
9
9
0
25 Mar 2022
A phase transition for finding needles in nonlinear haystacks with LASSO artificial neural networks
Xiaoyu Ma
S. Sardy
N. Hengartner
Nikolai Bobenko
Yen Ting Lin
19
2
0
21 Jan 2022
Convergence Rates for Learning Linear Operators from Noisy Data
Maarten V. de Hoop
Nikola B. Kovachki
Nicholas H. Nelsen
Andrew M. Stuart
6
54
0
27 Aug 2021
Neural Network Training Using
ℓ
1
\ell_1
ℓ
1
-Regularization and Bi-fidelity Data
Subhayan De
Alireza Doostan
13
24
0
27 May 2021
The Random Feature Model for Input-Output Maps between Banach Spaces
Nicholas H. Nelsen
Andrew M. Stuart
13
140
0
20 May 2020
Numerical Solution of the Parametric Diffusion Equation by Deep Neural Networks
Moritz Geist
P. Petersen
Mones Raslan
R. Schneider
Gitta Kutyniok
16
83
0
25 Apr 2020
The troublesome kernel -- On hallucinations, no free lunches and the accuracy-stability trade-off in inverse problems
N. Gottschling
Vegard Antun
A. Hansen
Ben Adcock
24
31
0
05 Jan 2020
1