ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.05899
  4. Cited By
Are Fewer Labels Possible for Few-shot Learning?

Are Fewer Labels Possible for Few-shot Learning?

10 December 2020
Suichan Li
Dongdong Chen
Yinpeng Chen
Lu Yuan
Lefei Zhang
Qi Chu
Nenghai Yu
    SSL
ArXivPDFHTML

Papers citing "Are Fewer Labels Possible for Few-shot Learning?"

25 / 25 papers shown
Title
Unsupervised Learning of Visual Features by Contrasting Cluster
  Assignments
Unsupervised Learning of Visual Features by Contrasting Cluster Assignments
Mathilde Caron
Ishan Misra
Julien Mairal
Priya Goyal
Piotr Bojanowski
Armand Joulin
OCL
SSL
215
4,070
0
17 Jun 2020
Bootstrap your own latent: A new approach to self-supervised Learning
Bootstrap your own latent: A new approach to self-supervised Learning
Jean-Bastien Grill
Florian Strub
Florent Altché
Corentin Tallec
Pierre Harvey Richemond
...
M. G. Azar
Bilal Piot
Koray Kavukcuoglu
Rémi Munos
Michal Valko
SSL
339
6,773
0
13 Jun 2020
Improved Baselines with Momentum Contrastive Learning
Improved Baselines with Momentum Contrastive Learning
Xinlei Chen
Haoqi Fan
Ross B. Girshick
Kaiming He
SSL
452
3,422
0
09 Mar 2020
A Simple Framework for Contrastive Learning of Visual Representations
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
331
18,721
0
13 Feb 2020
Big Transfer (BiT): General Visual Representation Learning
Big Transfer (BiT): General Visual Representation Learning
Alexander Kolesnikov
Lucas Beyer
Xiaohua Zhai
J. Puigcerver
Jessica Yung
Sylvain Gelly
N. Houlsby
MQ
264
1,204
0
24 Dec 2019
Momentum Contrast for Unsupervised Visual Representation Learning
Momentum Contrast for Unsupervised Visual Representation Learning
Kaiming He
Haoqi Fan
Yuxin Wu
Saining Xie
Ross B. Girshick
SSL
171
12,065
0
13 Nov 2019
A Baseline for Few-Shot Image Classification
A Baseline for Few-Shot Image Classification
Guneet Singh Dhillon
Pratik Chaudhari
Avinash Ravichandran
Stefano Soatto
77
579
0
06 Sep 2019
A Closer Look at Few-shot Classification
A Closer Look at Few-shot Classification
Wei-Yu Chen
Yen-Cheng Liu
Z. Kira
Y. Wang
Jia-Bin Huang
109
1,761
0
08 Apr 2019
Assume, Augment and Learn: Unsupervised Few-Shot Meta-Learning via
  Random Labels and Data Augmentation
Assume, Augment and Learn: Unsupervised Few-Shot Meta-Learning via Random Labels and Data Augmentation
Antreas Antoniou
Amos Storkey
SSL
63
75
0
26 Feb 2019
Transductive Zero-Shot Learning with Visual Structure Constraint
Transductive Zero-Shot Learning with Visual Structure Constraint
Bo Liu
Dongdong Chen
Yan-Ran Li
Xingguang Yan
Junge Zhang
Yizhou Yu
Jing Liao
86
85
0
06 Jan 2019
Unsupervised Meta-Learning For Few-Shot Image Classification
Unsupervised Meta-Learning For Few-Shot Image Classification
Siavash Khodadadeh
Ladislau Bölöni
M. Shah
SSL
VLM
47
140
0
28 Nov 2018
Unsupervised Learning via Meta-Learning
Unsupervised Learning via Meta-Learning
Kyle Hsu
Sergey Levine
Chelsea Finn
SSL
OffRL
75
230
0
04 Oct 2018
Meta-Learning with Latent Embedding Optimization
Meta-Learning with Latent Embedding Optimization
Andrei A. Rusu
Dushyant Rao
Jakub Sygnowski
Oriol Vinyals
Razvan Pascanu
Simon Osindero
R. Hadsell
132
1,370
0
16 Jul 2018
Deep Clustering for Unsupervised Learning of Visual Features
Deep Clustering for Unsupervised Learning of Visual Features
Mathilde Caron
Piotr Bojanowski
Armand Joulin
Matthijs Douze
SSL
88
1,890
0
15 Jul 2018
Unsupervised Feature Learning via Non-Parametric Instance-level
  Discrimination
Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination
Zhirong Wu
Yuanjun Xiong
Stella X. Yu
Dahua Lin
SSL
170
3,450
0
05 May 2018
Meta-Learning for Semi-Supervised Few-Shot Classification
Meta-Learning for Semi-Supervised Few-Shot Classification
Mengye Ren
Eleni Triantafillou
S. S. Ravi
Jake C. Snell
Kevin Swersky
J. Tenenbaum
Hugo Larochelle
R. Zemel
SSL
65
1,282
0
02 Mar 2018
Learning to Compare: Relation Network for Few-Shot Learning
Learning to Compare: Relation Network for Few-Shot Learning
Flood Sung
Yongxin Yang
Li Zhang
Tao Xiang
Philip Torr
Timothy M. Hospedales
263
4,042
0
16 Nov 2017
Few-Shot Learning with Graph Neural Networks
Few-Shot Learning with Graph Neural Networks
Victor Garcia Satorras
Joan Bruna
GNN
167
1,239
0
10 Nov 2017
EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and
  Land Cover Classification
EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification
P. Helber
B. Bischke
Andreas Dengel
Damian Borth
125
1,811
0
31 Aug 2017
Prototypical Networks for Few-shot Learning
Prototypical Networks for Few-shot Learning
Jake C. Snell
Kevin Swersky
R. Zemel
277
8,114
0
15 Mar 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
806
11,866
0
09 Mar 2017
Deep Bayesian Active Learning with Image Data
Deep Bayesian Active Learning with Image Data
Y. Gal
Riashat Islam
Zoubin Ghahramani
BDL
UQCV
68
1,732
0
08 Mar 2017
Matching Networks for One Shot Learning
Matching Networks for One Shot Learning
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
VLM
343
7,316
0
13 Jun 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.0K
193,426
0
10 Dec 2015
Describing Textures in the Wild
Describing Textures in the Wild
Mircea Cimpoi
Subhransu Maji
Iasonas Kokkinos
S. Mohamed
Andrea Vedaldi
3DV
102
2,661
0
14 Nov 2013
1