Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.05716
Cited By
Utilising Graph Machine Learning within Drug Discovery and Development
9 December 2020
Thomas Gaudelet
Ben Day
Arian R. Jamasb
Jyothish Soman
Cristian Regep
Gertrude Liu
Jeremy B. R. Hayter
R. Vickers
Charlie Roberts
Jian Tang
D. Roblin
Tom L. Blundell
M. Bronstein
J. Taylor-King
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Utilising Graph Machine Learning within Drug Discovery and Development"
12 / 12 papers shown
Title
Improving Link Prediction in Social Networks Using Local and Global Features: A Clustering-based Approach
S. Ghasemi
Ahmad Zarei
16
6
0
17 May 2023
GraphGANFed: A Federated Generative Framework for Graph-Structured Molecules Towards Efficient Drug Discovery
Daniel Manu
Jingjing Yao
Wuji Liu
Xiang Sun
FedML
35
6
0
11 Apr 2023
Diffusing Graph Attention
Daniel Glickman
Eran Yahav
GNN
47
3
0
01 Mar 2023
A Generalization of ViT/MLP-Mixer to Graphs
Xiaoxin He
Bryan Hooi
T. Laurent
Adam Perold
Yann LeCun
Xavier Bresson
47
88
0
27 Dec 2022
Combinatorial Optimization with Physics-Inspired Graph Neural Networks
M. Schuetz
J. K. Brubaker
H. Katzgraber
AI4CE
22
177
0
02 Jul 2021
A Review of Biomedical Datasets Relating to Drug Discovery: A Knowledge Graph Perspective
Stephen Bonner
Ian P Barrett
Cheng Ye
Rowan Swiers
O. Engkvist
A. Bender
Charles Tapley Hoyt
William L. Hamilton
29
94
0
19 Feb 2021
Attentive cross-modal paratope prediction
Andreea Deac
Petar Velickovic
Pietro Sormanni
36
58
0
12 Jun 2018
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
267
1,945
0
09 Jun 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
224
1,338
0
12 Feb 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
251
1,811
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
253
3,239
0
24 Nov 2016
Efficient Estimation of Word Representations in Vector Space
Tomáš Mikolov
Kai Chen
G. Corrado
J. Dean
3DV
242
31,257
0
16 Jan 2013
1