Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.05625
Cited By
DONE: Distributed Approximate Newton-type Method for Federated Edge Learning
10 December 2020
Canh T. Dinh
N. H. Tran
Tuan Dung Nguyen
Wei Bao
A. R. Balef
B. Zhou
Albert Y. Zomaya
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"DONE: Distributed Approximate Newton-type Method for Federated Edge Learning"
8 / 8 papers shown
Title
Review of Mathematical Optimization in Federated Learning
Shusen Yang
Fangyuan Zhao
Zihao Zhou
Liang Shi
Xuebin Ren
Zongben Xu
FedML
AI4CE
75
0
0
02 Dec 2024
Scalable and Resource-Efficient Second-Order Federated Learning via Over-the-Air Aggregation
Abdulmomen Ghalkha
Chaouki Ben Issaid
Mehdi Bennis
29
0
0
10 Oct 2024
Fed-Sophia: A Communication-Efficient Second-Order Federated Learning Algorithm
Ahmed Elbakary
Chaouki Ben Issaid
Mohammad Shehab
Karim G. Seddik
Tamer A. ElBatt
Mehdi Bennis
39
2
0
10 Jun 2024
FAGH: Accelerating Federated Learning with Approximated Global Hessian
Mrinmay Sen
A. K. Qin
Krishna Mohan
FedML
32
0
0
16 Mar 2024
Q-SHED: Distributed Optimization at the Edge via Hessian Eigenvectors Quantization
Nicolò Dal Fabbro
M. Rossi
Luca Schenato
S. Dey
23
0
0
18 May 2023
Network-GIANT: Fully distributed Newton-type optimization via harmonic Hessian consensus
A. Maritan
Ganesh Sharma
Luca Schenato
S. Dey
25
2
0
13 May 2023
SHED: A Newton-type algorithm for federated learning based on incremental Hessian eigenvector sharing
Nicolò Dal Fabbro
S. Dey
M. Rossi
Luca Schenato
FedML
29
14
0
11 Feb 2022
Adaptive Federated Learning in Resource Constrained Edge Computing Systems
Shiqiang Wang
Tiffany Tuor
Theodoros Salonidis
K. Leung
C. Makaya
T. He
Kevin S. Chan
144
1,687
0
14 Apr 2018
1