Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.05508
Cited By
Deep Learning Methods For Synthetic Aperture Radar Image Despeckling: An Overview Of Trends And Perspectives
10 December 2020
Giulia Fracastoro
E. Magli
Giovanni Poggi
G. Scarpa
D. Valsesia
L. Verdoliva
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Learning Methods For Synthetic Aperture Radar Image Despeckling: An Overview Of Trends And Perspectives"
5 / 5 papers shown
Title
RSNet: A Light Framework for The Detection of Multi-scale Remote Sensing Targets
Hongyu Chen
Chong Chen
Fei Wang
Yuhu Shi
Weiming Zeng
52
1
0
20 Feb 2025
Reduction of rain-induced errors for wind speed estimation on SAR observations using convolutional neural networks
A. Colin
P. Tandeo
C. Peureux
R. Husson
Ronan Fablet
14
0
0
16 Mar 2023
As if by magic: self-supervised training of deep despeckling networks with MERLIN
Emanuele Dalsasso
L. Denis
F. Tupin
18
64
0
25 Oct 2021
LambdaNetworks: Modeling Long-Range Interactions Without Attention
Irwan Bello
281
179
0
17 Feb 2021
Non-Local Recurrent Network for Image Restoration
Ding Liu
B. Wen
Yuchen Fan
Chen Change Loy
Thomas S. Huang
SupR
140
628
0
07 Jun 2018
1