ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.05199
  4. Cited By
A Riemannian Block Coordinate Descent Method for Computing the
  Projection Robust Wasserstein Distance

A Riemannian Block Coordinate Descent Method for Computing the Projection Robust Wasserstein Distance

9 December 2020
Minhui Huang
Shiqian Ma
Lifeng Lai
ArXivPDFHTML

Papers citing "A Riemannian Block Coordinate Descent Method for Computing the Projection Robust Wasserstein Distance"

12 / 12 papers shown
Title
Efficient Optimization with Orthogonality Constraint: a Randomized Riemannian Submanifold Method
Efficient Optimization with Orthogonality Constraint: a Randomized Riemannian Submanifold Method
Andi Han
Pierre-Louis Poirion
Akiko Takeda
6
0
0
18 May 2025
Statistical and Computational Guarantees of Kernel Max-Sliced Wasserstein Distances
Statistical and Computational Guarantees of Kernel Max-Sliced Wasserstein Distances
Jie Wang
M. Boedihardjo
Yao Xie
54
1
0
24 May 2024
Distributional Counterfactual Explanations With Optimal Transport
Distributional Counterfactual Explanations With Optimal Transport
Lei You
Lele Cao
Mattias Nilsson
Bo Zhao
Lei Lei
OT
OffRL
22
1
0
23 Jan 2024
Statistical, Robustness, and Computational Guarantees for Sliced
  Wasserstein Distances
Statistical, Robustness, and Computational Guarantees for Sliced Wasserstein Distances
Sloan Nietert
Ritwik Sadhu
Ziv Goldfeld
Kengo Kato
38
37
0
17 Oct 2022
Spherical Sliced-Wasserstein
Spherical Sliced-Wasserstein
Clément Bonet
P. Berg
Nicolas Courty
Françcois Septier
Lucas Drumetz
Minh Pham
33
27
0
17 Jun 2022
Riemannian Hamiltonian methods for min-max optimization on manifolds
Riemannian Hamiltonian methods for min-max optimization on manifolds
Andi Han
Bamdev Mishra
Pratik Jawanpuria
Pawan Kumar
Junbin Gao
38
17
0
25 Apr 2022
Revisiting Sliced Wasserstein on Images: From Vectorization to
  Convolution
Revisiting Sliced Wasserstein on Images: From Vectorization to Convolution
Khai Nguyen
Nhat Ho
30
25
0
04 Apr 2022
On the Convergence of Projected Alternating Maximization for Equitable
  and Optimal Transport
On the Convergence of Projected Alternating Maximization for Equitable and Optimal Transport
Minhui Huang
Shiqian Ma
Lifeng Lai
35
3
0
29 Sep 2021
Sinkhorn Distributionally Robust Optimization
Sinkhorn Distributionally Robust Optimization
Jie Wang
Rui Gao
Yao Xie
46
35
0
24 Sep 2021
Re-evaluating Word Mover's Distance
Re-evaluating Word Mover's Distance
Ryoma Sato
M. Yamada
H. Kashima
36
23
0
30 May 2021
Two-sample Test with Kernel Projected Wasserstein Distance
Two-sample Test with Kernel Projected Wasserstein Distance
Jie Wang
Rui Gao
Yao Xie
24
19
0
12 Feb 2021
Two-sample Test using Projected Wasserstein Distance
Two-sample Test using Projected Wasserstein Distance
Jie Wang
Rui Gao
Yao Xie
27
19
0
22 Oct 2020
1