ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.04728
  4. Cited By
Neural Mechanics: Symmetry and Broken Conservation Laws in Deep Learning
  Dynamics

Neural Mechanics: Symmetry and Broken Conservation Laws in Deep Learning Dynamics

8 December 2020
D. Kunin
Javier Sagastuy-Breña
Surya Ganguli
Daniel L. K. Yamins
Hidenori Tanaka
ArXivPDFHTML

Papers citing "Neural Mechanics: Symmetry and Broken Conservation Laws in Deep Learning Dynamics"

17 / 17 papers shown
Title
TeleSparse: Practical Privacy-Preserving Verification of Deep Neural Networks
TeleSparse: Practical Privacy-Preserving Verification of Deep Neural Networks
Mohammad Maheri
Hamed Haddadi
Alex Davidson
69
0
0
27 Apr 2025
Deep Weight Factorization: Sparse Learning Through the Lens of Artificial Symmetries
Deep Weight Factorization: Sparse Learning Through the Lens of Artificial Symmetries
Chris Kolb
T. Weber
Bernd Bischl
David Rügamer
109
0
0
04 Feb 2025
From Lazy to Rich: Exact Learning Dynamics in Deep Linear Networks
From Lazy to Rich: Exact Learning Dynamics in Deep Linear Networks
Clémentine Dominé
Nicolas Anguita
A. Proca
Lukas Braun
D. Kunin
P. Mediano
Andrew M. Saxe
32
3
0
22 Sep 2024
Investigation into the Training Dynamics of Learned Optimizers
Investigation into the Training Dynamics of Learned Optimizers
Jan Sobotka
Petr Simánek
Daniel Vasata
26
0
0
12 Dec 2023
Analyzing and Improving the Training Dynamics of Diffusion Models
Analyzing and Improving the Training Dynamics of Diffusion Models
Tero Karras
M. Aittala
J. Lehtinen
Janne Hellsten
Timo Aila
S. Laine
28
155
0
05 Dec 2023
The Geometry of Neural Nets' Parameter Spaces Under Reparametrization
The Geometry of Neural Nets' Parameter Spaces Under Reparametrization
Agustinus Kristiadi
Felix Dangel
Philipp Hennig
26
11
0
14 Feb 2023
An SDE for Modeling SAM: Theory and Insights
An SDE for Modeling SAM: Theory and Insights
Enea Monzio Compagnoni
Luca Biggio
Antonio Orvieto
F. Proske
Hans Kersting
Aurélien Lucchi
23
13
0
19 Jan 2023
Effects of Data Geometry in Early Deep Learning
Effects of Data Geometry in Early Deep Learning
Saket Tiwari
G. Konidaris
69
7
0
29 Dec 2022
Symmetries, flat minima, and the conserved quantities of gradient flow
Symmetries, flat minima, and the conserved quantities of gradient flow
Bo-Lu Zhao
I. Ganev
Robin G. Walters
Rose Yu
Nima Dehmamy
47
16
0
31 Oct 2022
Toward Equation of Motion for Deep Neural Networks: Continuous-time
  Gradient Descent and Discretization Error Analysis
Toward Equation of Motion for Deep Neural Networks: Continuous-time Gradient Descent and Discretization Error Analysis
Taiki Miyagawa
39
9
0
28 Oct 2022
Symmetry Teleportation for Accelerated Optimization
Symmetry Teleportation for Accelerated Optimization
B. Zhao
Nima Dehmamy
Robin G. Walters
Rose Yu
ODL
23
20
0
21 May 2022
AI Poincaré 2.0: Machine Learning Conservation Laws from
  Differential Equations
AI Poincaré 2.0: Machine Learning Conservation Laws from Differential Equations
Ziming Liu
Varun Madhavan
M. Tegmark
PINN
36
27
0
23 Mar 2022
Multi-scale Feature Learning Dynamics: Insights for Double Descent
Multi-scale Feature Learning Dynamics: Insights for Double Descent
Mohammad Pezeshki
Amartya Mitra
Yoshua Bengio
Guillaume Lajoie
61
25
0
06 Dec 2021
Automatic Symmetry Discovery with Lie Algebra Convolutional Network
Automatic Symmetry Discovery with Lie Algebra Convolutional Network
Nima Dehmamy
Robin G. Walters
Yanchen Liu
Dashun Wang
Rose Yu
AI4CE
78
81
0
15 Sep 2021
The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations,
  and Anomalous Diffusion
The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations, and Anomalous Diffusion
D. Kunin
Javier Sagastuy-Breña
Lauren Gillespie
Eshed Margalit
Hidenori Tanaka
Surya Ganguli
Daniel L. K. Yamins
31
15
0
19 Jul 2021
On the Validity of Modeling SGD with Stochastic Differential Equations
  (SDEs)
On the Validity of Modeling SGD with Stochastic Differential Equations (SDEs)
Zhiyuan Li
Sadhika Malladi
Sanjeev Arora
33
78
0
24 Feb 2021
A Differential Equation for Modeling Nesterov's Accelerated Gradient
  Method: Theory and Insights
A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights
Weijie Su
Stephen P. Boyd
Emmanuel J. Candes
105
1,152
0
04 Mar 2015
1