ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.04545
  4. Cited By
Discovering key topics from short, real-world medical inquiries via
  natural language processing and unsupervised learning

Discovering key topics from short, real-world medical inquiries via natural language processing and unsupervised learning

8 December 2020
Angelo Ziletti
Christoph Berns
Oliver Treichel
Thomas Weber
Jennifer J. Liang
Stephanie Kammerath
Marion Schwaerzler
J. Virayah
D. Ruau
Xin Ma
Andreas Mattern
ArXivPDFHTML

Papers citing "Discovering key topics from short, real-world medical inquiries via natural language processing and unsupervised learning"

1 / 1 papers shown
Title
Deep Representation Learning of Electronic Health Records to Unlock
  Patient Stratification at Scale
Deep Representation Learning of Electronic Health Records to Unlock Patient Stratification at Scale
Isotta Landi
B. Glicksberg
Hao-Chih Lee
S. Cherng
Giulia Landi
M. Danieletto
J. Dudley
Cesare Furlanello
Riccardo Miotto
42
148
0
14 Mar 2020
1