Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.04462
Cited By
Multi-Objective Interpolation Training for Robustness to Label Noise
8 December 2020
Diego Ortego
Eric Arazo
Paul Albert
Noel E. O'Connor
Kevin McGuinness
NoLa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Multi-Objective Interpolation Training for Robustness to Label Noise"
22 / 72 papers shown
Title
Label-Noise Learning with Intrinsically Long-Tailed Data
Yang Lu
Yiliang Zhang
Bo Han
Y. Cheung
Hanzi Wang
NoLa
48
17
0
21 Aug 2022
Maximising the Utility of Validation Sets for Imbalanced Noisy-label Meta-learning
D. Hoang
Cuong C. Nguyen
Cuong Nguyen anh Belagiannis Vasileios
G. Carneiro
22
2
0
17 Aug 2022
Neighborhood Collective Estimation for Noisy Label Identification and Correction
Jichang Li
Guanbin Li
Feng Liu
Yizhou Yu
NoLa
27
29
0
05 Aug 2022
ProMix: Combating Label Noise via Maximizing Clean Sample Utility
Rui Xiao
Yiwen Dong
Haobo Wang
Lei Feng
Runze Wu
Gang Chen
J. Zhao
24
54
0
21 Jul 2022
A Study of Deep CNN Model with Labeling Noise Based on Granular-ball Computing
Dawei Dai
Donggen Li
Zhiguo Zhuang
NoLa
11
0
0
17 Jul 2022
Block-SCL: Blocking Matters for Supervised Contrastive Learning in Product Matching
Mario Almagro
David Jiménez-Cabello
Diego Ortego
Emilio Almazán
Eva Martínez
19
3
0
05 Jul 2022
Embedding contrastive unsupervised features to cluster in- and out-of-distribution noise in corrupted image datasets
Paul Albert
Eric Arazo
Noel E. O'Connor
Kevin McGuinness
21
8
0
04 Jul 2022
UNICON: Combating Label Noise Through Uniform Selection and Contrastive Learning
Nazmul Karim
Mamshad Nayeem Rizve
Nazanin Rahnavard
Ajmal Saeed Mian
M. Shah
NoLa
30
98
0
28 Mar 2022
Selective-Supervised Contrastive Learning with Noisy Labels
Shikun Li
Xiaobo Xia
Shiming Ge
Tongliang Liu
NoLa
21
172
0
08 Mar 2022
L2B: Learning to Bootstrap Robust Models for Combating Label Noise
Yuyin Zhou
Xianhang Li
Fengze Liu
Qingyue Wei
Xuxi Chen
Lequan Yu
Cihang Xie
M. Lungren
Lei Xing
NoLa
39
3
0
09 Feb 2022
Learning with Neighbor Consistency for Noisy Labels
Ahmet Iscen
Jack Valmadre
Anurag Arnab
Cordelia Schmid
NoLa
38
75
0
04 Feb 2022
Learning with Noisy Labels by Efficient Transition Matrix Estimation to Combat Label Miscorrection
Seong Min Kye
Kwanghee Choi
Joonyoung Yi
Buru Chang
NoLa
33
15
0
29 Nov 2021
Open-Vocabulary Instance Segmentation via Robust Cross-Modal Pseudo-Labeling
Dat T. Huynh
Jason Kuen
Zhe-nan Lin
Jiuxiang Gu
Ehsan Elhamifar
ISeg
VLM
22
83
0
24 Nov 2021
SSR: An Efficient and Robust Framework for Learning with Unknown Label Noise
Chen Feng
Georgios Tzimiropoulos
Ioannis Patras
NoLa
19
18
0
22 Nov 2021
PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels
F. Cordeiro
Vasileios Belagiannis
Ian Reid
G. Carneiro
NoLa
27
18
0
22 Oct 2021
Multi-Source domain adaptation via supervised contrastive learning and confident consistency regularization
Marin Scalbert
Maria Vakalopoulou
Florent Couzinié-Devy
16
19
0
30 Jun 2021
A Framework using Contrastive Learning for Classification with Noisy Labels
Madalina Ciortan
R. Dupuis
Thomas Peel
VLM
NoLa
21
12
0
19 Apr 2021
ScanMix: Learning from Severe Label Noise via Semantic Clustering and Semi-Supervised Learning
Ragav Sachdeva
F. Cordeiro
Vasileios Belagiannis
Ian Reid
G. Carneiro
31
34
0
21 Mar 2021
Contrastive Representation Learning: A Framework and Review
Phúc H. Lê Khắc
Graham Healy
Alan F. Smeaton
SSL
AI4TS
175
685
0
10 Oct 2020
Reliable Label Bootstrapping for Semi-Supervised Learning
Paul Albert
Diego Ortego
Eric Arazo
Noel E. O'Connor
Kevin McGuinness
SSL
16
5
0
23 Jul 2020
Improved Baselines with Momentum Contrastive Learning
Xinlei Chen
Haoqi Fan
Ross B. Girshick
Kaiming He
SSL
267
3,371
0
09 Mar 2020
Combating noisy labels by agreement: A joint training method with co-regularization
Hongxin Wei
Lei Feng
Xiangyu Chen
Bo An
NoLa
316
498
0
05 Mar 2020
Previous
1
2