Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.03351
Cited By
The universal approximation theorem for complex-valued neural networks
6 December 2020
F. Voigtlaender
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The universal approximation theorem for complex-valued neural networks"
19 / 19 papers shown
Title
Kolmogorov-Arnold Network Autoencoders
Mohammadamin Moradi
Shirin Panahi
Erik Bollt
Ying-Cheng Lai
23
5
0
02 Oct 2024
CoNO: Complex Neural Operator for Continous Dynamical Physical Systems
Karn Tiwari
N. M. A. Krishnan
P. PrathoshA
26
0
0
01 Jun 2024
Neural Controlled Differential Equations with Quantum Hidden Evolutions
Lingyi Yang
Zhen Shao
29
0
0
30 Apr 2024
Approximation Rates and VC-Dimension Bounds for (P)ReLU MLP Mixture of Experts
Anastasis Kratsios
Haitz Sáez de Ocáriz Borde
Takashi Furuya
Marc T. Law
MoE
41
1
0
05 Feb 2024
Do stable neural networks exist for classification problems? -- A new view on stability in AI
Z. N. D. Liu
A. C. Hansen
22
0
0
15 Jan 2024
Universal Approximation Theorem for Vector- and Hypercomplex-Valued Neural Networks
Marcos Eduardo Valle
Wington L. Vital
Guilherme Vieira
15
7
0
04 Jan 2024
On the Computational Complexities of Complex-valued Neural Networks
K. S. Mayer
J. A. Soares
Ariadne A. Cruz
D. Arantes
21
2
0
19 Oct 2023
Understanding Vector-Valued Neural Networks and Their Relationship with Real and Hypercomplex-Valued Neural Networks
Marcos Eduardo Valle
19
3
0
14 Sep 2023
Spherical Fourier Neural Operators: Learning Stable Dynamics on the Sphere
Boris Bonev
Thorsten Kurth
Christian Hundt
Jaideep Pathak
Maximilian Baust
K. Kashinath
Anima Anandkumar
AI4Cl
AI4CE
16
123
0
06 Jun 2023
Universal approximation with complex-valued deep narrow neural networks
Paul Geuchen
Thomas Jahn
Hannes Matt
13
3
0
26 May 2023
Selected aspects of complex, hypercomplex and fuzzy neural networks
A. Niemczynowicz
R. Kycia
Maciej Jaworski
A. Siemaszko
J. Calabuig
...
Baruch Schneider
Diana Berseghyan
Irina Perfiljeva
V. Novák
Piotr Artiemjew
19
0
0
29 Dec 2022
Deep Learning Methods for Partial Differential Equations and Related Parameter Identification Problems
Derick Nganyu Tanyu
Jianfeng Ning
Tom Freudenberg
Nick Heilenkötter
A. Rademacher
U. Iben
Peter Maass
AI4CE
23
34
0
06 Dec 2022
On the Approximation and Complexity of Deep Neural Networks to Invariant Functions
Gao Zhang
Jin-Hui Wu
Shao-Qun Zhang
16
0
0
27 Oct 2022
Qualitative neural network approximation over R and C: Elementary proofs for analytic and polynomial activation
Josiah Park
Stephan Wojtowytsch
23
1
0
25 Mar 2022
Theoretical Exploration of Flexible Transmitter Model
Jin-Hui Wu
Shao-Qun Zhang
Yuan Jiang
Zhiping Zhou
33
3
0
11 Nov 2021
Towards Understanding Theoretical Advantages of Complex-Reaction Networks
Shao-Qun Zhang
Gaoxin Wei
Zhi-Hua Zhou
15
17
0
15 Aug 2021
Invariant polynomials and machine learning
W. Haddadin
34
7
0
26 Apr 2021
Scaling of neural-network quantum states for time evolution
Sheng-Hsuan Lin
F. Pollmann
19
25
0
21 Apr 2021
Quantitative approximation results for complex-valued neural networks
A. Caragea
D. Lee
J. Maly
G. Pfander
F. Voigtlaender
13
5
0
25 Feb 2021
1