ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.02985
  4. Cited By
Selecting the number of components in PCA via random signflips

Selecting the number of components in PCA via random signflips

5 December 2020
David Hong
Yueqi Sheng
Yan Sun
ArXivPDFHTML

Papers citing "Selecting the number of components in PCA via random signflips"

10 / 10 papers shown
Title
ALPCAH: Subspace Learning for Sample-wise Heteroscedastic Data
ALPCAH: Subspace Learning for Sample-wise Heteroscedastic Data
Javier Salazar Cavazos
Jeffrey A. Fessler
Laura Balzano
31
2
0
12 May 2025
ALPCAH: Sample-wise Heteroscedastic PCA with Tail Singular Value
  Regularization
ALPCAH: Sample-wise Heteroscedastic PCA with Tail Singular Value Regularization
Javier Salazar Cavazos
Jeffrey A. Fessler
Laura Balzano
32
1
0
06 Jul 2023
Pursuit of a Discriminative Representation for Multiple Subspaces via
  Sequential Games
Pursuit of a Discriminative Representation for Multiple Subspaces via Sequential Games
Druv Pai
Michael Psenka
Chih-Yuan Chiu
Manxi Wu
Yan Sun
Yi Ma
24
6
0
18 Jun 2022
Confidence Intervals for the Number of Components in Factor Analysis and
  Principal Components Analysis via Subsampling
Confidence Intervals for the Number of Components in Factor Analysis and Principal Components Analysis via Subsampling
Chetkar Jha
Ian Barnett
6
0
0
10 May 2022
Closed-Loop Data Transcription to an LDR via Minimaxing Rate Reduction
Closed-Loop Data Transcription to an LDR via Minimaxing Rate Reduction
Xili Dai
Shengbang Tong
Mingyang Li
Ziyang Wu
Michael Psenka
...
Pengyuan Zhai
Yaodong Yu
Xiaojun Yuan
Harry Shum
Yi Ma
25
30
0
12 Nov 2021
Consistency of invariance-based randomization tests
Consistency of invariance-based randomization tests
Yan Sun
35
19
0
25 Apr 2021
Biwhitening Reveals the Rank of a Count Matrix
Biwhitening Reveals the Rank of a Count Matrix
Boris Landa
Thomas T. Zhang
Y. Kluger
13
21
0
25 Mar 2021
HePPCAT: Probabilistic PCA for Data with Heteroscedastic Noise
HePPCAT: Probabilistic PCA for Data with Heteroscedastic Noise
David Hong
Kyle Gilman
Laura Balzano
Jeffrey A. Fessler
40
19
0
10 Jan 2021
Optimally Weighted PCA for High-Dimensional Heteroscedastic Data
Optimally Weighted PCA for High-Dimensional Heteroscedastic Data
David Hong
Fan Yang
Jeffrey A. Fessler
Laura Balzano
16
25
0
30 Oct 2018
Factor modeling for high-dimensional time series: Inference for the
  number of factors
Factor modeling for high-dimensional time series: Inference for the number of factors
Clifford Lam
Q. Yao
49
479
0
04 Jun 2012
1