ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.02684
  4. Cited By
Model-Agnostic Learning to Meta-Learn
v1v2 (latest)

Model-Agnostic Learning to Meta-Learn

4 December 2020
A. Devos
Yatin Dandi
    OOD
ArXiv (abs)PDFHTML

Papers citing "Model-Agnostic Learning to Meta-Learn"

24 / 24 papers shown
Title
BOIL: Towards Representation Change for Few-shot Learning
BOIL: Towards Representation Change for Few-shot Learning
Jaehoon Oh
Hyungjun Yoo
ChangHwan Kim
Seyoung Yun
39
9
0
20 Aug 2020
Robust Learning Through Cross-Task Consistency
Robust Learning Through Cross-Task Consistency
Amir Zamir
Alexander Sax
Teresa Yeo
Oğuzhan Fatih Kar
Nikhil Cheerla
Rohan Suri
Zhangjie Cao
Jitendra Malik
Leonidas Guibas
OOD
55
158
0
07 Jun 2020
Continual Reinforcement Learning with Multi-Timescale Replay
Continual Reinforcement Learning with Multi-Timescale Replay
Christos Kaplanis
Claudia Clopath
Murray Shanahan
CLL
37
15
0
16 Apr 2020
Automated Relational Meta-learning
Automated Relational Meta-learning
Huaxiu Yao
Xian Wu
Zhiqiang Tao
Yaliang Li
Bolin Ding
Ruirui Li
Z. Li
83
90
0
03 Jan 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
541
42,591
0
03 Dec 2019
Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation
Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation
Risto Vuorio
Shao-Hua Sun
Hexiang Hu
Joseph J. Lim
93
218
0
30 Oct 2019
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness
  of MAML
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML
Aniruddh Raghu
M. Raghu
Samy Bengio
Oriol Vinyals
305
647
0
19 Sep 2019
Torchmeta: A Meta-Learning library for PyTorch
Torchmeta: A Meta-Learning library for PyTorch
T. Deleu
Tobias Würfl
Mandana Samiei
Joseph Paul Cohen
Yoshua Bengio
OffRL
74
85
0
14 Sep 2019
Meta-Learning with Implicit Gradients
Meta-Learning with Implicit Gradients
Aravind Rajeswaran
Chelsea Finn
Sham Kakade
Sergey Levine
116
858
0
10 Sep 2019
Fast and Flexible Multi-Task Classification Using Conditional Neural
  Adaptive Processes
Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive Processes
James Requeima
Jonathan Gordon
J. Bronskill
Sebastian Nowozin
Richard Turner
69
242
0
18 Jun 2019
Meta-Learning Representations for Continual Learning
Meta-Learning Representations for Continual Learning
Khurram Javed
Martha White
KELMCLL
80
320
0
29 May 2019
Hierarchically Structured Meta-learning
Hierarchically Structured Meta-learning
Huaxiu Yao
Ying Wei
Junzhou Huang
Z. Li
62
203
0
13 May 2019
A Closer Look at Few-shot Classification
A Closer Look at Few-shot Classification
Wei-Yu Chen
Yen-Cheng Liu
Z. Kira
Y. Wang
Jia-Bin Huang
114
1,768
0
08 Apr 2019
Toward Multimodal Model-Agnostic Meta-Learning
Toward Multimodal Model-Agnostic Meta-Learning
Risto Vuorio
Shao-Hua Sun
Hexiang Hu
Joseph J. Lim
91
32
0
18 Dec 2018
Unsupervised Meta-Learning For Few-Shot Image Classification
Unsupervised Meta-Learning For Few-Shot Image Classification
Siavash Khodadadeh
Ladislau Bölöni
M. Shah
SSLVLM
57
140
0
28 Nov 2018
How to train your MAML
How to train your MAML
Antreas Antoniou
Harrison Edwards
Amos Storkey
74
777
0
22 Oct 2018
On First-Order Meta-Learning Algorithms
On First-Order Meta-Learning Algorithms
Alex Nichol
Joshua Achiam
John Schulman
235
2,237
0
08 Mar 2018
Meta-Learning for Semi-Supervised Few-Shot Classification
Meta-Learning for Semi-Supervised Few-Shot Classification
Mengye Ren
Eleni Triantafillou
S. S. Ravi
Jake C. Snell
Kevin Swersky
J. Tenenbaum
Hugo Larochelle
R. Zemel
SSL
72
1,284
0
02 Mar 2018
Meta-SGD: Learning to Learn Quickly for Few-Shot Learning
Meta-SGD: Learning to Learn Quickly for Few-Shot Learning
Zhenguo Li
Fengwei Zhou
Fei Chen
Hang Li
96
1,121
0
31 Jul 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
829
11,943
0
09 Mar 2017
Matching Networks for One Shot Learning
Matching Networks for One Shot Learning
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
VLM
375
7,333
0
13 Jun 2016
Trust Region Policy Optimization
Trust Region Policy Optimization
John Schulman
Sergey Levine
Philipp Moritz
Michael I. Jordan
Pieter Abbeel
277
6,796
0
19 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,312
0
22 Dec 2014
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLMObjD
1.7K
39,595
0
01 Sep 2014
1