ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.02414
  4. Cited By
Universal Approximation Property of Neural Ordinary Differential
  Equations

Universal Approximation Property of Neural Ordinary Differential Equations

4 December 2020
Takeshi Teshima
Koichi Tojo
Masahiro Ikeda
Isao Ishikawa
Kenta Oono
ArXivPDFHTML

Papers citing "Universal Approximation Property of Neural Ordinary Differential Equations"

12 / 12 papers shown
Title
Feedback Favors the Generalization of Neural ODEs
Feedback Favors the Generalization of Neural ODEs
Jindou Jia
Zihan Yang
Meng Wang
Kexin Guo
Jianfei Yang
Xiang Yu
Lei Guo
OOD
AI4CE
43
2
0
14 Oct 2024
Deep Koopman-layered Model with Universal Property Based on Toeplitz Matrices
Deep Koopman-layered Model with Universal Property Based on Toeplitz Matrices
Yuka Hashimoto
Tomoharu Iwata
28
0
0
03 Oct 2024
Deep Curvilinear Editing: Commutative and Nonlinear Image Manipulation
  for Pretrained Deep Generative Model
Deep Curvilinear Editing: Commutative and Nonlinear Image Manipulation for Pretrained Deep Generative Model
Takehiro Aoshima
Takashi Matsubara
42
4
0
26 Nov 2022
Whitening Convergence Rate of Coupling-based Normalizing Flows
Whitening Convergence Rate of Coupling-based Normalizing Flows
Felix Dräxler
Christoph Schnörr
Ullrich Kothe
36
7
0
25 Oct 2022
Dynamical systems' based neural networks
Dynamical systems' based neural networks
E. Celledoni
Davide Murari
B. Owren
Carola-Bibiane Schönlieb
Ferdia Sherry
OOD
46
12
0
05 Oct 2022
Do Residual Neural Networks discretize Neural Ordinary Differential
  Equations?
Do Residual Neural Networks discretize Neural Ordinary Differential Equations?
Michael E. Sander
Pierre Ablin
Gabriel Peyré
35
25
0
29 May 2022
Learning via nonlinear conjugate gradients and depth-varying neural ODEs
Learning via nonlinear conjugate gradients and depth-varying neural ODEs
George Baravdish
Gabriel Eilertsen
Rym Jaroudi
B. Johansson
Lukávs Malý
Jonas Unger
24
3
0
11 Feb 2022
Neural Information Squeezer for Causal Emergence
Neural Information Squeezer for Causal Emergence
Jiang Zhang
Kaiwei Liu
CML
30
14
0
25 Jan 2022
Neural Flows: Efficient Alternative to Neural ODEs
Neural Flows: Efficient Alternative to Neural ODEs
Marin Bilovs
Johanna Sommer
Syama Sundar Rangapuram
Tim Januschowski
Stephan Günnemann
AI4TS
33
70
0
25 Oct 2021
Symplectic Adjoint Method for Exact Gradient of Neural ODE with Minimal
  Memory
Symplectic Adjoint Method for Exact Gradient of Neural ODE with Minimal Memory
Takashi Matsubara
Yuto Miyatake
Takaharu Yaguchi
23
23
0
19 Feb 2021
Momentum Residual Neural Networks
Momentum Residual Neural Networks
Michael E. Sander
Pierre Ablin
Mathieu Blondel
Gabriel Peyré
27
57
0
15 Feb 2021
Neural Ordinary Differential Equation Control of Dynamics on Graphs
Neural Ordinary Differential Equation Control of Dynamics on Graphs
Thomas Asikis
Lucas Böttcher
Nino Antulov-Fantulin
33
43
0
17 Jun 2020
1